Microbiome and Metabolome Profiles Associated With Different Types of Short Bowel Syndrome: Implications for Treatment

. 2020 Jan ; 44 (1) : 105-118. [epub] 20190429

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31032975

BACKGROUND: The gut microbiome and metabolome may significantly influence clinical outcomes in patients with short bowel syndrome (SBS). The study aimed to describe specific metagenomic/metabolomics profiles of different SBS types and to identify possible therapeutic targets. METHODS: Fecal microbiome (FM), volatile organic compounds (VOCs), and bile acid (BA) spectrum were analyzed in parenteral nutrition (PN)-dependent SBS I, SBS II, and PN-independent (non-PN) SBS patients. RESULTS: FM in SBS I, SBS II, and non-PN SBS shared characteristic features (depletion of beneficial anaerobes, high abundance of Lactobacilaceae and Enterobacteriaceae). SBS I patients were characterized by the abundance of oxygen-tolerant microrganisms and depletion of strict anaerobes. Non-PN SBS subjects showed markers of partial FM normalization. FM dysbiosis was translated into VOC and BA profiles characteristic for each SBS cohort. A typical signature of all SBS patients comprised high saturated aldehydes and medium-chain fatty acids and reduced short-chain fatty acid (SCFA) content. Particularly, SBS I and II exhibited low protein metabolism intermediate (indole, p-cresol) content despite the hypothetical presence of relevant metabolism pathways. Distinctive non-PN SBS marker was high phenol content. SBS patients' BA fecal spectrum was enriched by chenodeoxycholic and deoxycholic acids and depleted of lithocholic acid. CONCLUSIONS: Environmental conditions in SBS gut significantly affect FM composition and metabolic activity. The common feature of diverse SBS subjects is the altered VOC/BA profile and the lack of important products of microbial metabolism. Strategies oriented on the microbiome/metabolome reconstitution and targeted delivery of key compounds may represent a promising therapeutic strategy in SBS patients.

Zobrazit více v PubMed

Pironi L, Arends J, Baxter J, et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin Nutr. 2015;34(2):171-180.

Jeppesen PB. Spectrum of short bowel syndrome in adults intestinal insufficiency to intestinal failure. J Parenter Enteral Nutr. 2014;38(1 Suppl):8S-13S.

Gillard L, Mayeur C, Robert V, et al. Microbiota is involved in post-resection adaptation in humans with short bowel syndrome. Front Physiol. 2017;8:224.

Mayeur C, Gratadoux JJ, Bridonneau C, et al. Faecal D/L Lactate ratio is a metabolic signature of microbiota imbalance in patients with short bowel syndrome. PLoS One. 2013;8(1):e54335.

De Preter V, Verbeke K. Metabolomics as a diagnostic tool in gastroenterology. World J Gastrointest Pharmacol Ther. 2013;4(4):97-107.

Pereira-Fantini PM, Byars SG, Pitt J, et al. Unravelling the metabolic impact of SBS-associated microbial dysbiosis: insights from the piglet short bowel syndrome model. Sci Rep. 2017;7:43326.

Janssen AW, Kersten S. Potential mediators linking gut bacteria to metabolic health: a critical view. J Physiol. 2017;595(2):477-487.

Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332-1345.

Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241-259.

Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30(3):332-338.

Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335-336.

Aitchison J. The Statistical Analysis of Compositional Data (Monographs on Statistics and Applied Probability). London: Chapman & Hall Ltd.; 1986.

R: A language and environment for statistical computing [computer program]. Version. Vienna, Austria: R Foundation for Statistical Computing.

Rohart F, Gautier B, Singh A, Le Cao KA. mixOmics: An R package for 'omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13(11):e1005752.

Boccia S, Torre I, Santarpia L, et al. Intestinal microbiota in adult patients with short bowel syndrome: preliminary results from a pilot study. Clin Nutr. 2017;36(6):1707-1709.

Huang Y, Guo F, Li Y, Wang J, Li J. Fecal microbiota signatures of adult patients with different types of short bowel syndrome. J Gastroenterol Hepatol. 2017;32(12):1949-1957.

Joly F, Mayeur C, Bruneau A, et al. Drastic changes in fecal and mucosa-associated microbiota in adult patients with short bowel syndrome. Biochimie. 2010;92(7):753-761.

Walton C, Fowler DP, Turner C, et al. Analysis of volatile organic compounds of bacterial origin in chronic gastrointestinal diseases. Inflamm Bowel Dis. 2013;19(10):2069-2078.

Jalali M, Zare Sakhvidi MJ, Bahrami A, Berijani N, Mahjub H. Oxidative stress biomarkers in exhaled breath of workers exposed to crystalline silica dust by SPME-GC-MS. J Res Health Sci. 2016;16(3):153-161.

Orhan H, Van Holland B, Krab B, et al. Evaluation of a multi-parameter biomarker set for oxidative damage in man: increased urinary excretion of lipid, protein and DNA oxidation products after one hour of exercise. Free Radical Res. 2004;38(12):1269-1279.

Montanari C, Kamdem SLS, Serrazanetti DI, Vannini L, Guerzoni ME. Oxylipins generation in Lactobacillus helveticus in relation to unsaturated fatty acid supplementation. J Applied Microbiol. 2013;115(6):1388-1401.

Lee SM, Oh J, Hurh BS, Jeong GH, Shin YK, Kim YS. Volatile compounds produced by lactobacillus paracasei during oat fermentation. J Food Sci. 2016;81(12):C2915-C2922.

Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(1):228-233.

Korecka A, Dona A, Lahiri S, et al. Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism. NPJ Biofilms Microbiomes. 2016;2:16014.

Zelante T, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372-385.

Zenewicz LA, Yin X, Wang G, et al. IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic. J Immunol. 2013;190(10):5306-5312.

Behnsen J, Jellbauer S, Wong CP, et al. The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria. Immunity. 2014;40(2):262-273.

Bansal T, Englert D, Lee J, Hegde M, Wood TK, Jayaraman A. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157: H7 chemotaxis, colonization, and gene expression. Infect Immun. 2007;75(9):4597-4607.

Shimada Y, Kinoshita M, Harada K, et al. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS One. 2013;8(11):e80604.

Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535(7610):65-74.

Gao J, Xu K, Liu H, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol. 2018;8:13.

Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev. 2010;23(2):366-384.

Soldavini J, Kaunitz JD. Pathobiology and potential therapeutic value of intestinal short-chain fatty acids in gut inflammation and obesity. Dig Dis Sci. 2013;58(10):2756-2766.

Ohkohchi N, Andoh T, Izumi U, Igarashi Y, Ohi R. Disorder of bile acid metabolism in children with short bowel syndrome. J Gastroenterol. 1997;32(4):472-479.

Pereira-Fantini PM, Lapthorne S, Joyce SA, et al. Altered FXR signalling is associated with bile acid dysmetabolism in short bowel syndrome-associated liver disease. J Hepatol. 2014;61(5):1115-1125.

Ward JBJ, Lajczak NK, Kelly OB, et al. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physio Gastrointest Liver Physiol. 2017;312(6):G550-G558.

Gojda J, Senkyrik, M, Tesinsky, P. Short bowel syndrome epidemiology, analysis from national HPN registry. Clin Nutr. 2017;36:S139-S140

Nightingale J, Woodward JM. Guidelines for management of patients with a short bowel. Gut. 2006;55(Suppl 4):iv1-12.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...