• This record comes from PubMed

Discovering cryptic species in the Aspiciliella intermutans complex (Megasporaceae, Ascomycota) - First results using gene concatenation and coalescent-based species tree approaches

. 2019 ; 14 (5) : e0216675. [epub] 20190528

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Taxonomic identifications in some groups of lichen-forming fungi have been challenge largely due to the scarcity of taxonomically relevant features and limitations of morphological and chemical characters traditionally used to distinguish closely related taxa. Delineating species boundaries in closely related species or species complexes often requires a range of multisource data sets and comprehensive analytical methods. Here we aim to examine species boundaries in a group of saxicolous lichen forming fungi, the Aspiciliella intermutans complex (Megasporaceae), widespread mainly in the Mediterranean. We gathered DNA sequences of the nuclear ribosomal internal transcribed spacer (nuITS), the nuclear large subunit (nuLSU), the mitochondrial small subunit (mtSSU) ribosomal DNA, and the DNA replication licensing factor MCM7 from 80 samples mostly from Iran, Caucasia, Greece and eastern Europe. We used a combination of phylogenetic strategies and a variety of empirical, sequence-based species delimitation approaches to infer species boundaries in this group. The latter included: the automatic barcode gap discovery (ABGD), the multispecies coalescent approach *BEAST and Bayesian Phylogenetics and Phylogeography (BPP) program. Different species delimitation scenarios were compared using Bayes factors species delimitation analysis. Furthermore, morphological, chemical, ecological and geographical features of the sampled specimens were examined. Our study uncovered cryptic species diversity in A. intermutans and showed that morphology-based taxonomy may be unreliable, underestimating species diversity in this group of lichens. We identified a total of six species-level lineages in the A. intermutans complex using inferences from multiple empirical operational criteria. We found little corroboration between morphological and ecological features with our proposed candidate species, while secondary metabolite data do not corroborate tree topology. The present study on the A. intermutans species-complex indicates that the genus Aspiciliella, as currently circumscribed, is more diverse in Eurasia than previously expected.

See more in PubMed

Nordin A, Savić S, Tibell L (2010) Phylogeny and taxonomy of Aspicilia and Megasporaceae. Mycologia 102: 1339–1349. 10.3852/09-266 PubMed DOI

Nordin A (2015) New synonyms and lectotypes in Aspicilia (Megasporaceae, Ascomycota). Phytotaxa 192: 197–200.

Nash THIII, Gries C, Bungartz F (eds.) 2007 (2008) Lichen Flora of the Greater Sonoran Region, Volume 3. Tempe, Arizona: Lichens Unlimited, Arizona State University. 575 pp. (with a 56-page insert containing 224 color photographs).

Owe-Larsson B, Nordin A, Tibell L (2007) Aspicilia In: Nash TH III, Gries C, Bungartz F (eds) Lichen Flora of the greater Sonoran Desert region, lichens unlimited, volume 3 Arizona State University, Tempe: Pp. 61–108.

Zakeri Z, Divakar PK, Otte V (2017) Taxonomy and Phylogeny of Aspiciliella, a Resurrected genus of Megasporaceae, Including the New Species A. portosantana. Herzogia 30: 166–176.

Zakeri Z, Gasparyan A, Aptroot A (2016) A new corticolous Megaspora (Megasporaceae) species from Armenia. Willdenowia 46: 245–251.

Jaklitsch W, Baral HO, Lücking R, Lumbsch HT (eds) (2016) Syllabus of Plant Families Part 1/2 Ascomycota. Stuttgart: Borntraeger Science Publishers.

Zakeri Z, Sipman H, Paukov A, Otte V (2019) Neotypification of Aspiciliella cupreoglauca and lectotypification and synonymization of Aspicilia reticulata (Megasporaceae, Ascomycota). Lichenologist 51 (1): 97–99.

Werner RG (1932) Contribution á la flore cryptogamique du Maroc V. Cavanillesia 5: 157–174.

Nylander W (1872) Addenda nova ad Lichenographiam Europaeam. Flora (Regensburg) 55: 353–365.

Arnold FChG (1887) Lichenologische Ausflüge in Tirol. Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien 37: 81–150.

Nimis P. L. & Martellos S. (2008) The Information System on Italian Lichens. Version 4.0. University of Trieste, Dept. of Biology, IN4.0/1 (http://dbiodbs.univ.trieste.it/).

Llimona X, Hladun N (2001) Checklist of the lichens and lichenicolous fungi of the Iberian Peninsula and Balearic Islands. Bocconea 14: 5–581.

Fletcher A, Purvis OW, Coppins BJ (2009) Aspicilia A. Massal Pp.: 181–188. In: Smith C. W., Aptroot A., Coppins B. J., Flechter A., Gilbert O. L., James P. W. & Wolseley P. A. (eds). The Lichens of Great Britain and Ireland. London: The British Lichen Society.

Hafellner J (1995) A new checklist of lichens and lichenicolous fungi of insular Laurimacaronesia including a lichenological bibliography for the area. Fritschiana 5: 1–132.

Pitard CJ, Bouly de Lesdain M (1909) Contribution à l'étude des lichens de Tunisie. Bulletin de la Sociète Botanique de France 56: 243–264.

John V, Seaward MRD, Sipman HJM, Zedda L (2004) Lichens and lichenicolous fungi from Syria, including a first checklist. Herzogia 17: 157–177.

Paukov AG, Frolov IV, Vondrakova OS (2014) New records of lichens of the genus Aspicilia in the Ural Mts. The Immanuel Kant Baltic Federal University Vestnik, Kaliningrad 7: 102–109.

McCune B, Rosentreter R, Spribille T, Breuss O, Wheeler T (2014) Montana Lichens: An Annotated List. Monographs in North American Lichenology 2: 1–183.

Del-Prado R, Divakar PK, Lumbsch HT, Crespo A (2016) Hidden genetic diversity in an asexually reproducing lichen forming fungal group. PLoS ONE 11: e0161031 10.1371/journal.pone.0161031 PubMed DOI PMC

Leavitt SD, Esslinger TL, Nelsen MP, Lumbsch HT (2013a) Further species diversity in Neotropical Oropogon (Lecanoromycetes: Parmeliaceae) in Central America. Lichenologist 45: 553–564.

Leavitt SD, Esslinger TL, Spribille T, Divakar PK, Lumbsch HT (2013b) Multilocus phylogeny of the lichen forming fungal genus Melanohalea (Parmeliaceae, Ascomycota): Insights on diversity, distributions, and a comparison of species tree and concatenated topologies. Molecular Phylogenetics and Evolution 66: 138–152. PubMed

Leavitt SD, Fankhauser JD, Leavitt DH, Porter LD, Johnson LA, St Clair LL (2011a) Complex patterns of speciation in cosmopolitan ‘‘rock posy” lichens–Discovering and delimiting cryptic fungal species in the lichen–forming Rhizoplaca melanophthalma species–complex (Lecanoraceae, Ascomycota). Molecular Phylogenetics and Evolution 59: 587–602. PubMed

Leavitt SD, Johnson LA, Goward T, St Clair LL (2011b) Species delimitation in taxonomically difficult lichen–forming fungi: An example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. Molecular Phylogenetics and Evolution 60: 317–332. 10.1016/j.ympev.2011.05.012 PubMed DOI

Parnmen S, Rangsiruji A, Mongkolsuk P, Boonpragob K, Nutakki A, Lumbsch HT (2012) Using phylogenetic and coalescent methods to understand the species diversity in the Cladia aggregata complex (Ascomycota, Lecanorales).–PLoS ONE 7: e52245 10.1371/journal.pone.0052245 PubMed DOI PMC

Leavitt SD, Moreau CS, Lumbsch HT (2015) The Dynamic Discipline of Species Delimitation: Progress Toward Effectively Recognizing Species Boundaries in Natural Populations In: Upreti DK, Divakar PK, Shukla V, Bajpai R, editors. Recent Advances in Lichenology: Springer India; p. 11–44.

Lumbsch H T, Huhndorf SM (eds) (2007) Outline of Ascomycota. Myconet 13: 1–58.

Orange A, James PW, White FJ (2001) Microchemical Methods for the Identification of Lichens London: British Lichen Society. ISBN 0-9540418-01.

Park SY, Jang SH, Oh SO, Kim JA, Hur JS (2014) An easy, rapid, and cost-effective method for DNA extraction from various lichen taxa and specimens suitable for analysis of fungal and algal strains. Mycobiology 42: 311–316. 10.5941/MYCO.2014.42.4.311 PubMed DOI PMC

Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes–application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118. PubMed

White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics Pp. 315–322. In: Innis M.A., Gelfand D.H., Sninsky J.J. & White T.J. (eds). PCR Protocols: A Guide to methods and Applications. New York: Academic Press.

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. 10.1128/jb.172.8.4238-4246.1990 PubMed DOI PMC

Zoller S, Scheidegger C, Sperisen C (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511–516.

Schmitt I, Crespo A, Divakar P, Fankhauser J, Herman-Sackett E (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23: 35–40. 10.3767/003158509X470602 PubMed DOI PMC

Leavitt SD (2010) Assessing traditional morphology- and chemistry-based species circumscriptions in lichenized ascomycetes: Character evolution and species delimitation in common western North American lichens. USA, Utah, Provo, Brigham Young University: Ph.D. dissertation.

Katoh K., Asimenos G. & Toh H. 2009. Multiple Alignment of DNA Sequences with MAFFT. Methods in Molecular Biology 537: 39–64. 10.1007/978-1-59745-251-9_3 PubMed DOI

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–553. 10.1093/oxfordjournals.molbev.a026334 PubMed DOI

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ‐TREE: a fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. 10.1093/molbev/msu300 PubMed DOI PMC

Chernomor O, von Haeseler A, Minh BQ (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology. 65: 997–1008. 10.1093/sysbio/syw037 PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. 10.1038/nmeth.4285 PubMed DOI PMC

Minh BQ, Nguyen MA, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30: 1188–1195 10.1093/molbev/mst024 PubMed DOI PMC

Gutierrez Gabriel & Blanco Oscar & Divakar Pradeep& Lumbsch Thorsten & Crespo Ana. (2007). Patterns of Group I Intron Presence in Nuclear SSU rDNA of the Lichen Family Parmeliaceae. Journal of molecular evolution. 64 181–95. 10.1007/s00239-005-0313-y PubMed DOI

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. 10.1093/bioinformatics/btg180 PubMed DOI

Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864–77. 10.1111/j.1365-294X.2011.05239.x WOS:000302616200008. PubMed DOI

Heled J, Drummond AJ (2010) Bayesian Inference of Species Trees from Multilocus Data. Molecular Biology and Evolution. 27: 570–80. 10.1093/molbev/msp274 PubMed DOI PMC

Yang Z, Rannala B (2014) Unguided species delimitation using DNA sequence data from multiple loci. Molecular Biology and Evolution 31: 3125–3135. 10.1093/molbev/msu279 PubMed DOI PMC

Drummond A J, Rambaut A (2007) BEAST. Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214 10.1186/1471-2148-7-214 PubMed DOI PMC

Yang ZH (2015) The BPP program for species tree estimation and species delimitation. Current Zoology 61: 854–865.

Grummer JA, Bryson RW, Reeder TW (2014) Species delimitation using Bayes factors: simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae). Systematic Biology 63: 119–133. 10.1093/sysbio/syt069 PubMed DOI

Sipman HJM, Raus T (2002) An inventory of the lichen flora of Kalimnos and parts of Kos (Dodecanisos, Greece). Willdenowia, 32(2):351–392

Lücking R, Barrie FR, Genney D (2014) Dictyonema coppinsii, a new name for the European species known as Dictyonema interruptum (Basidiomycota: Agaricales: Hygrophoraceae), with a validation of its photobiont Rhizonema (Cyanoprokaryota: Nostocales: Rhizonemataceae). Lichenologist 46: 261–267.

Altermann S, Leavitt SD, Goward T, Nelsen MP, Lumbsch HT (2014) How do you solve a problem like Letharia? A new look at cryptic species in lichen-forming fungi using Bayesian clustering and SNPs from multilocus sequence data. PLoS ONE 9: e97556 10.1371/journal.pone.0097556 PubMed DOI PMC

Molina MC, Del-Prado R, Divakar PK, Sánchez-Mata D, Crespo A (2011) Another example of cryptic diversity in lichen-forming fungi: The new species Parmelia mayi (Ascomycota: Parmeliaceae). Organisms Diversity and Evolution 11: 331–342.

Otálora MAG, Martínez I, Aragón G, Wedin M (2017) Species delimitation and phylogeography of the Pectenia species-complex: A misunderstood case of species-pairs in lichenized fungi, where reproduction mode does not delimit lineages. Fungal Biology 121: 222–233. 10.1016/j.funbio.2016.12.001 PubMed DOI

Kraichak E, Lücking R, Aptroot A, Beck A, Dornes P, John, et al. (2015) Hidden diversity in the morphologically variable script lichen (Graphis scripta) complex (Ascomycota, Ostropales, Graphidaceae). Organisms Diversity & Evolution 15: 447–458.

Hudson RR, Coyne JA (2002) Mathematical consequences of the genealogical species concept. Evolution. 56: 1557 PubMed

Knowles LL, Carstens BC (2007) Delimiting species without monophyletic gene trees. Systematic Biology. 56: 887–895. 10.1080/10635150701701091 PubMed DOI

Camargo A, Morando M, Avila LJ, Sites JW (2012) Species delimitation with Abc and other coalescent-based methods: a test of accuracy with simulations and an empirical example with lizards of the Liolaemus Darwinii Complex (squamata: Liolaemidae). Evolution 66: 2834–2849. 10.1111/j.1558-5646.2012.01640.x PubMed DOI

Rannala B, Yang Z (2017) Efficient Bayesian species tree inference under the multispecies coalescent. Syst. Biol. 66: 823–842. 10.1093/sysbio/syw119 PubMed DOI PMC

Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences of the United States of America 107:9264–9269. 10.1073/pnas.0913022107 PubMed DOI PMC

Lumbsch HT, Leavitt SD (2011) Goodbye morphology? A paradigm shifts in the delimitation of species in lichenized fungi. Fungal Diversity 50: 59–72.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...