Fitness of reciprocal F1 hybrids between Rhinanthus minor and Rhinanthus major under controlled conditions and in the field
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
31141226
DOI
10.1111/jeb.13492
Knihovny.cz E-zdroje
- Klíčová slova
- emergence, field transplant, germination, greenhouse, hybridization, seed production, stratification, survival,
- MeSH
- hybridizace genetická * MeSH
- klíčení MeSH
- květy genetika fyziologie MeSH
- Orobanchaceae genetika MeSH
- prostředí kontrolované MeSH
- semena rostlinná genetika fyziologie MeSH
- semenáček MeSH
- Publikační typ
- časopisecké články MeSH
The performance of first-generation hybrids determines to a large extent the long-term outcome of hybridization in natural populations. F1 hybrids can facilitate further gene flow between the two parental species, especially in animal-pollinated flowering plants. We studied the performance of reciprocal F1 hybrids between Rhinanthus minor and R. major, two hemiparasitic, annual, self-compatible plant species, from seed germination to seed production under controlled conditions and in the field. We sowed seeds with known ancestry outdoors before winter and followed the complete life cycle until plant death in July the following season. Germination under laboratory conditions was much lower for the F1 hybrid formed on R. major compared with the reciprocal hybrid formed on R. minor, and this confirmed previous results from similar experiments. However, this difference was not found under field conditions, which seems to indicate that the experimental conditions used for germination in the laboratory are not representative for the germination behaviour of the hybrids under more natural conditions. The earlier interpretation that F1 hybrid seeds formed on R. major face intrinsic genetic incompatibilities therefore appears to be incorrect. Both F1 hybrids performed at least as well as and sometimes better than R. minor, which had a higher fitness than R. major in one of the two years in the greenhouse and in the field transplant experiment. The high fitness of the F1 hybrids confirms findings from naturally mixed populations, where F1 hybrids appear in the first year after the two species meet, which leads to extensive advanced-hybrid formation and introgression in subsequent generations.
Biodiversity Research Centre Earth and Life Institute UCLouvain Louvain la Neuve Belgium
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Abbott, R., Albach, D., Ansell, S., Arntzen, J. W., Baird, S. J. E., Bierne, N., … Zinner, D. (2013). Hybridization and speciation. Journal of Evolutionary Biology, 26, 229-246. https://doi.org/10.1111/j.1420-9101.2012.02599.x
Arnold, M. L. (1993). Iris nelsonii (Iridaceae): Origin and genetic composition of a homoploid hybrid species. American Journal of Botany, 80, 577-583. https://doi.org/10.1002/j.1537-2197.1993.tb13843.x
Arnold, M. L., Ballerini, E. S., & Brothers, A. N. (2012). Hybrid fitness, adaptation and evolutionary diversification: Lessons learned from Louisiana Irises. Heredity, 108, 159-166. https://doi.org/10.1038/hdy.2011.65
Arnold, M. L., & Hodges, S. A. (1995). Are natural hybrids fit or unfit relative to their parents? Trends in Ecology & Evolution, 10, 67-71. https://doi.org/10.1016/S0169-5347(00)88979-X
Birchler, J. A., Yao, H., Chudalayandi, S., Vaiman, D., & Veitia, R. A. (2010). Heterosis. Plant Cell, 22, 2105-2112. https://doi.org/10.1105/tpc.110.076133
ter Borg, S. J. (2005). Dormancy and germination in six Rhinanthus species in relation to climate. Folia Geobotanica, 40, 243-260. https://doi.org/10.1007/BF02803238
Burke, J. M., Carney, S. E., & Arnold, M. L. (1998). Hybrid fitness in the Louisiana irises: Analysis of parental and F1 performance. Evolution, 52, 37-43.
Cahenzli, F., Bonetti, C., & Erhardt, A. (2018). Divergent strategies in pre- and postzygotic reproductive isolation between two closely related Dianthus species. Evolution, 72, 1851-1862. https://doi.org/10.1111/evo.13556
Campbell, D. R., & Waser, N. M. (2001). Genotype-by-environment interaction and the fitness of plant hybrids in the wild. Evolution, 55, 669-676. https://doi.org/10.1554/0014-3820(2001)055[0669:GBEIAT]2.0.CO;2
Campbell, D. R., Waser, N. M., & Meléndez-Ackerman, E. J. (1997). Analyzing pollinator-mediated selection in a plant hybrid zone: Hummingbird visitation patterns on three spatial scales. American Naturalist, 149, 295-315. https://doi.org/10.1086/285991
Campion-Bourget, F. (1980). L'hybridation interspécifique expérimentale chez les cinq principales espèces de Rhinanthus L. de France. Review of Cytology, Biology and Végétales Botony, 3, 221-280.
Campion-Bourget, F. (1983). La germination des graines des espèces françaises de Rhinanthus L. Review of Cytology, Biology and Végétales Botony, 6, 15-94.
Cornman, R. S., Burke, J. M., Wesselingh, R. A., & Arnold, M. L. (2004). Contrasting genetic structure of adults and progeny in a Louisiana Iris hybrid population. Evolution, 58, 2669-2681. https://doi.org/10.1111/j.0014-3820.2004.tb01620.x
Cruzan, M. B., & Arnold, M. L. (1993). Ecological and genetic associations in an Iris hybrid zone. Evolution, 47, 1432-1445. https://doi.org/10.1111/j.1558-5646.1993.tb02165.x
Ducarme, V., Vrancken, J., & Wesselingh, R. A. (2010). Hybridization in annual plants: Patterns and dynamics during a four-year study in mixed Rhinanthus populations. Folia Geobotanica, 45, 387-405. https://doi.org/10.1007/s12224-010-9077-2
Ducarme, V., & Wesselingh, R. A. (2005). Detecting hybridization in mixed populations of Rhinanthus minor and Rhinanthus angustifolius. Folia Geobotanica, 40, 151-161. https://doi.org/10.1007/BF02803231
Ducarme, V., & Wesselingh, R. A. (2010). Performance of two Rhinanthus species under different hydric conditions. Plant Ecology, 206, 263-277. https://doi.org/10.1007/s11258-009-9640-1
Ducarme, V., & Wesselingh, R. A. (2013). Outcrossing rates in two self-compatible, hybridising Rhinanthus species: Implications for hybrid formation. Plant Biology, 15, 541-547. https://doi.org/10.1111/j.1438-8677.2012.00668.x
Emms, S. K., & Arnold, M. L. (1997). The effect of habitat on parental and hybrid fitness: Transplant experiments with Louisiana irises. Evolution, 51, 1112-1119. https://doi.org/10.1111/j.1558-5646.1997.tb03958.x
Emms, S. K., & Arnold, M. L. (2000). Site-to-site differences in pollinator visitation patterns in a Louisiana iris hybrid zone. Oikos, 91, 568-578. https://doi.org/10.1034/j.1600-0706.2000.910319.x
Ernst, W. H. O., Nelissen, H. J. M., & de Hullu, E. (1987). Size hierarchy and mineral status of Rhinanthus angustifolius populations under different grassland management regimes. Vegetatio, 70, 93-103.
Favre, A., & Karrenberg, S. (2011). Stress tolerance in closely related species and their first-generation hybrids: A case study of Silene. Journal of Ecology, 99, 1415-1423. https://doi.org/10.1111/j.1365-2745.2011.01865.x
Favre, A., Widmer, A., & Karrenberg, S. (2017). Differential adaptation drives ecological speciation in campions (Silene): Evidence from a multi-site transplant experiment. New Phytologist, 213, 1487-1499. https://doi.org/10.1111/nph.14202
Gramlich, S., & Hörandl, E. (2016). Fitness of natural willow hybrids in a pioneer mosaic hybrid zone. Ecology and Evolution, 6, 7645-7655. https://doi.org/10.1002/ece3.2470
Gramlich, S., Sagmeister, P., Dullinger, S., Hadacek, F., & Hörandl, E. (2016). Evolution in situ: Hybrid origin and establishment of willows (Salix L.) on alpine glacier forefields. Heredity, 116, 531-541. https://doi.org/10.1038/hdy.2016.14
Hargreaves, A. L., Weiner, J. L., & Eckert, C. G. (2015). High-elevation range limit of an annual herb is neither caused nor reinforced by declining pollinator service. Journal of Ecology, 103, 572-584. https://doi.org/10.1111/1365-2745.12377
Hipperson, H., Dunning, L. T., Baker, W. J., Butlin, R. K., Hutton, I., Papadopulos, A. S. T., … Savolainen, V. (2016). Ecological speciation in sympatric palms: 2. Pre- and post-zygotic isolation. Journal of Evolutionary Biology, 29, 2143-2156. https://doi.org/10.1111/jeb.12933
Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75, 800-802. https://doi.org/10.1093/biomet/75.4.800
Johnston, J. A., Donovan, L. A., & Arnold, M. L. (2004). Novel phenotypes among early generation hybrids of two Louisiana iris species: Flooding experiments. Journal of Ecology, 92, 967. https://doi.org/10.1111/j.1365-2745.2004.00939.x
Kimball, S., Campbell, D. R., & Lessin, C. (2008). Differential performance of reciprocal hybrids in multiple environments. Journal of Ecology, 96, 1306-1318. https://doi.org/10.1111/j.1365-2745.2008.01432.x
Kwak, M. M. (1978). Pollination, hybridization and ethological isolation of Rhinanthus minor and R. serotinus (Rhinanthoideae: Scrophulariaceae) by bumblebees (Bombus Latr.). Taxon, 27, 145-158. https://doi.org/10.2307/1220235
Kwak, M. M. (1979). Maintenance of species integrity in sympatrically occurring Rhinanthus minor and R. serotinus in the Netherlands. Oecologia, 41, 1-9. https://doi.org/10.1007/BF00344833
Kwak, M. M. (1980). Artificial and natural hybridization and introgression in Rhinanthus (Scrophulariaceae) in relation to bumblebee pollination. Taxon, 29, 613-628. https://doi.org/10.2307/1220333
Lafon-Placette, C., & Köhler, C. (2016). Endosperm-based postzygotic hybridization barriers: Developmental mechanisms and evolutionary drivers. Molecular Ecology, 25, 2620-2629. https://doi.org/10.1111/mec.13552
Leebens-Mack, J., & Milligan, B. G. (1998). Pollination biology in hybridizing Baptisia (Fabaceae) populations. American Journal of Botany, 85, 500-507. https://doi.org/10.2307/2446433
Lepais, O., Roussel, G., Hubert, F., Kremer, A., & Gerber, S. (2013). Strength and variability of postmating reproductive isolating barriers between four European white oak species. Tree Genetics and Genomes, 9, 841-853. https://doi.org/10.1007/s11295-013-0602-3
Lindtke, D., Gompert, Z., Lexer, C., & Buerkle, C. A. (2014). Unexpected ancestry of Populus seedlings from a hybrid zone implies a large role for postzygotic selection in the maintenance of species. Molecular Ecology, 23, 4316-4330. https://doi.org/10.1111/mec.12759
Martin, N. H., Bouck, A. C., & Arnold, M. L. (2006). Detecting adaptive trait introgression between Iris fulva and I. brevicaulis in highly selective field conditions. Genetics, 172, 2481-2489. https://doi.org/10.1534/genetics.105.053538
Mudrák, O., & Lepš, J. (2010). Interactions of the hemiparasitic species Rhinanthus minor with its host plant community at two nutrient levels. Folia Geobotanica, 45, 407-424. https://doi.org/10.1007/s12224-010-9078-1
Mudrák, O., Mládek, J., Blažek, P., Lepš, J., Doležal, J., Nekvapilová, E., & Těšitel, J. (2014). Establishment of hemiparasitic Rhinanthus spp. in grassland restoration: Lessons learned from sowing experiments. Applied Vegetation Science, 17, 274-287. https://doi.org/10.1111/avsc.12073
Natalis, L. C., & Wesselingh, R. A. (2012a). Shared pollinators and pollen transfer dynamics in two hybridizing species, Rhinanthus minor and R. angustifolius. Oecologia, 170, 709-721. https://doi.org/10.1007/s00442-012-2346-4
Natalis, L. C., & Wesselingh, R. A. (2012b). Post-pollination barriers and their role in asymmetric hybridization in Rhinanthus (Orobanchaceae). American Journal of Botany, 99, 1847-1856. https://doi.org/10.3732/ajb.1200085
Natalis, L. C., & Wesselingh, R. A. (2013). Parental frequencies and spatial configuration shape bumblebee behavior and floral isolation in hybridizing Rhinanthus. Evolution, 67, 1692-1705. https://doi.org/10.1111/evo.12044
Peña, E. A., & Slate, E. H. (2006). Global validation of linear model assumptions. Journal of American Statistical Association, 101, 341-354.
Postma, F. M., & Ågren, J. (2018). Among-year variation in selection during early life stages and the genetic basis of fitness in Arabidopsis thaliana. Molecular Ecology, 27, 2498-2511. https://doi.org/10.1111/mec.14697
Rieseberg, L. H., Archer, M. A., & Wayne, R. K. (1999). Transgressive segregation, adaptation and speciation. Heredity, 83, 363-372. https://doi.org/10.1038/sj.hdy.6886170
Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-response analysis using R. PLoS ONE, 10, e0146021. https://doi.org/10.1371/journal.pone.0146021
Ritz, C., Pipper, C. B., & Streibig, J. C. (2013). Analysis of germination data from agricultural experiments. European Journal of Agronomy, 45, 1-6. https://doi.org/10.1016/j.eja.2012.10.003
von Soó, R., & Webb, D. A. (1972). Rhinanthus L. In T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters, et al. (Eds.), Flora Europaea volume 3, Diapensiaceae to Myoporaceae (pp. 276-280). Cambridge, UK: Cambridge University Press.
Strykstra, R. J., Bekker, R. M., & Verweij, G. L. (1996). Establishment of Rhinanthus angustifolius in a successional hayfield after seed dispersal by mowing machinery. Acta Botanica Neerlandica, 45, 557-562. https://doi.org/10.1111/j.1438-8677.1996.tb00810.x
Suarez-Gonzalez, A., Hefer, C. A., Lexer, C., Douglas, C. J., & Cronk, Q. C. B. (2018). Introgression from Populus balsamifera underlies adaptively significant variation and range boundaries in P. trichocarpa. New Phytologist, 217, 416-427. https://doi.org/10.1111/nph.14779
Těšitel, J., Lepš, J., Vráblová, M., & Cameron, D. D. (2011). The role of heterotrophic carbon acquisition by the hemiparasitic plant Rhinanthus alectorolophus in seedling establishment in natural communities: A physiological perspective. New Phytologist, 192, 188-199.
Tiffin, P., Olson, M. S., & Moyle, L. C. (2001). Asymmetrical crossing barriers in angiosperms. Proceedings of the Royal Society B: Biological Sciences, 268, 861-867. https://doi.org/10.1098/rspb.2000.1578
Turelli, M., & Moyle, L. C. (2007). Asymmetric postmating isolation: Darwin's corollary to Haldane's rule. Genetics, 176, 1059-1088. https://doi.org/10.1534/genetics.106.065979
Vrancken, J., Brochmann, C., & Wesselingh, R. A. (2012). A European phylogeography of Rhinanthus minor compared to R. angustifolius: Unexpected splits and signs of hybridization. Ecology and Evolution, 2, 1531-1548. https://doi.org/10.1002/ece3.276
Westbury, D. B. (2004). Biological flora of the British Isles: Rhinanthus minor L. Journal of Ecology, 92, 906-927. https://doi.org/10.1111/j.0022-0477.2004.00929.x
Westbury, D. B., & Dunnett, N. P. (2007). The impact of Rhinanthus minor in newly established meadows on a productive site. Applied Vegetation Science, 10, 121-129. https://doi.org/10.1111/j.1654-109X.2007.tb00510.x