Frustrated Lewis pairs: A real alternative to deuteride/tritide reductions
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31170318
DOI
10.1002/jlcr.3774
Knihovny.cz E-zdroje
- Klíčová slova
- deuterium labeled alcohol, frustrated Lewis pairs, hydrogen activation, labeled building block, nonmetallic reagent, tritium labeled alcohol,
- MeSH
- deuterium chemie MeSH
- izotopové značení metody MeSH
- katalýza MeSH
- Lewisovy kyseliny chemie MeSH
- tritium chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- deuterium MeSH
- Lewisovy kyseliny MeSH
- tritium MeSH
Deuterium- and tritium-labeled compounds play a principal role in tracing of biologically active molecules in complicated biochemical systems. The state-of-the-art techniques using noble metal catalysts or strong reducing agents often suffers from low functional group tolerances, poor selectivity, tricky or multistep synthesis of reagents, and low specific activity of the labeled product. Herein, we demonstrate a mild and nonmetallic technique of deuteration and tritiation of polarized double bonds, such as carbonyl compounds, yielding labeled alcohols of high specific activities. This one-pot synthesis uses carrier-free hydrogen gas in situ activated by a freshly prepared frustrated Lewis pair, generating reducing reagents. This labeling strategy shows better selectivity and functional group tolerances compared with current reductive methods. Reported is an example of the selective reduction of the aldehyde moiety of 3-acetylbenzaldehyde. What makes this technology groundbreaking is its mildness, selectivity, and generation of limited amount of radioactive waste as almost no byproducts were generated after use of (B(C6 F5 )33 H)(3 HTMP) reducing reagent. Radiochemical purity of desired 3 H-labeled product in a crude reaction mixture was determined of over 94%. This work provides, to the community of radiochemists, a practical protocol for frustrated Lewis pairs (FLP)-assisted deuterium/tritium labeling technology.
Zobrazit více v PubMed
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and tritium-labelled compounds: applications in the life sciences. Angew Chem-Int Edit. 2018;57(7):1758-1784.
Graham Lappin ST. Radiotracers in Drug Development. Boca Raton: CRC Press; 2006:320.
Lockley WJS, McEwen A, Cooke R. Tritium: a coming of age for drug discovery and development ADME studies. J Label Compd Radiopharm. 2012;55(7):235-257.
Atzrodt J, Derdau V. Pd- and Pt-catalyzed H/D exchange methods and their application for internal MS standard preparation from a Sanofi-Aventis perspective. J Label Compd Radiopharm. 2010;53(11-12):674-685.
Fan TWM, Lorkiewicz PK, Sellers K, Moseley HNB, Higashi RM, Lane AN. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol Ther. 2012;133(3):366-391.
Gant TG. Using deuterium in drug discovery: leaving the label in the drug. J Med Chem. 2014;57(9):3595-3611.
Mullard A. Deuterated drugs draw heavier backing. Nat Rev Drug Discov. 2016;15(4):219-221.
Mutlib AE. Application of stable isotope-labeled compounds in metabolism and in metabolism-mediated toxicity studies. Chem Res Toxicol. 2008;21(9):1672-1689.
Oklestkova J, Rarova L, Kvasnica M, Strnad M. Brassinosteroids: synthesis and biological activities. Phytochem Rev. 2015;14(6):1053-1072.
Loh YY, Nagao K, Hoover AJ, et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science. 2017;358(6367):1182-1187.
Marathe PH, Shyu WC, Humphreys WG. The use of radiolabeled compounds for ADME studies in discovery and exploratory development. Curr Pharm Des. 2004;10(24):2991-3008.
Penner N, Klunk LJ, Prakash C. Human radiolabeled mass balance studies: objectives, utilities and limitations. Biopharm Drug Dispos. 2009;30(4):185-203.
Klein AB, Bay T, Villumsen IS, et al. Autoradiographic imaging and quantification of the high-affinity GHB binding sites in rodent brain using H-3-HOCPCA. Neurochem Int. 2016;100:138-145.
Junk T, Catallo WJ. Hydrogen isotope exchange reactions involving C-H (D,T) bonds. Chem Soc Rev. 1997;26(5):401-406.
Atzrodt J, Derdau V, Fey T, Zimmermann J. The renaissance of H/D exchange. Angew Chem-Int Edit. 2007;46(41):7744-7765.
Derdau V, Atzrodt J, Holla W. H/D-exchange reactions with hydride-activated catalysts. J Label Compd Radiopharm. 2007;50(5-6):295-299.
Lockley WJS. 30 Years with ortho-directed hydrogen isotope exchange labelling. J Label Compd Radiopharm. 2007;50(9-10):779-788.
Lockley WJS, Heys JR. Metal-catalysed hydrogen isotope exchange labelling: a brief overview. J Label Compd Radiopharm. 2010;53(11-12):635-644.
Salter R. The development and use of iridium(I) phosphine systems for ortho-directed hydrogen-isotope exchange. J Label Compd Radiopharm. 2010;53(11-12):645-657.
Ma S, Villa G, Thuy-Boun PS, Homs A, Yu JQ. Palladium-catalyzed ortho-selective C-H deuteration of arenes: evidence for superior reactivity of weakly coordinated palladacycles. Angew Chem-Int Edit. 2014;53(3):734-737.
Yu RP, Hesk D, Rivera N, Pelczer I, Chirik PJ. Iron-catalysed tritiation of pharmaceuticals. Nature. 2016;529(7585):195-199.
Saljoughian M, Williams PG. Recent Developments in Tritium Incorporation for Radiotracer Studies. Curr Pharm Des. 2000;6(10):1029-1056.
Saljoughian M. Synthetic tritium labeling: reagents and methodologies. Synthesis-Stuttgart. 2002;(13):1781-1801.
Elbert T, Patil MR, Marek A. Enantiospecific tritium labeling of 28-homocastasterone. J Label Compd Radiopharm. 2017;60(3):176-182.
Marek A, Patil MR, Klepetarova B, Kohout L, Elbert T. A stereospecific pathway for the introduction of deuterium on the brassinosteroid skeleton by reductive dechlorination of chlorocarbonates. Tetrahedron Lett. 2012;53(16):2048-2050.
Marek A, Klepetarova B, Elbert T. A facile method for steroid labeling by heavy isotopes of hydrogen. Tetrahedron. 2015;71(29):4874-4882.
Alcaide A, Marconi L, Marek A, et al. Synthesis and pharmacological characterization of the selective GluK1 radioligand (S)-2-amino-3-(6 3H -2,4-dioxo-3,4-dihydrothieno.3,2-d pyrimidin1.(2H)- yl) propanoic acid (H-3 -NF608). Med Chem Commun. 2016;7(11):2136-2144.
Kuhne S, Nohr AC, Marek A, et al. Radiosynthesis and characterisation of a potent and selective GPR139 agonist radioligand. RSC Adv. 2016;6(2):947-952.
Marek A, Patil MR, Elbert T. The labeling of brassinosteroids by tritium. RSC Adv. 2015;5(80):65214-65220.
Tran PT, Larsen CO, Rondbjerg T, et al. Diversity-oriented peptide stapling: a third generation copper-catalysed azide-alkyne cycloaddition stapling and functionalisation strategy. Chem-Eur J. 2017;23(14):3490-3495.
Di Giglio MG, Muttenthaler M, Harpsoe K, et al. Development of a human vasopressin V-1a-receptor antagonist from an evolutionary-related insect neuropeptide. Sci Rep. 2017;7:15.
Voges R, Heys JR, Moenius T. Preparation of Compounds Labeled with Tritium and Carbon-14. Shippenham, Wiltshire, UK: John Wiley & Sons; 2009.
Ulrich Pleiss RV. Synthesis and Applications of Isotopically Labelled Compounds. Chichester, West Sussex, UK: Wiley; 2001:728.
Marek A, Pedersen MHF, Vogensen SB, Clausen RP, Frolund B, Elbert T. The labeling of unsaturated gamma-hydroxybutyric acid by heavy isotopes of hydrogen: iridium complex-mediated H/D exchange by C-H bond activation vs reduction by boro-deuterides/tritides. J Label Compd Radiopharm. 2016;59(12):476-483.
Kubas GJ. Chemistry-breaking the H-2 marriage and reuniting the couple. Science. 2006;314(5802):1096-1097.
Revunova K, Nikonov GI. Main group catalysed reduction of unsaturated bonds. Dalton Trans. 2015;44(3):840-866.
Power PP. Main-group elements as transition metals. Nature. 2010;463(7278):171-177.
Paradies J. Metal-free hydrogenation of unsaturated hydrocarbons employing molecular hydrogen. Angew Chem-Int Edit. 2014;53(14):3552-3557.
Atzrodt J, Derdau V, Kerr WJ, Reid M. C-H functionalisation for hydrogen isotope exchange. Angew Chem-Int Edit. 2018;57(12):3022-3047.
Kerr WJ, Mudd RJ, Reid M, Atzrodt J, Derdau V. Iridium-catalyzed Csp(3)-H activation for mild and selective hydrogen isotope exchange. ACS Catal. 2018;8(11):10895-10900.
Vogensen SB, Marek A, Bay T, et al. New synthesis and tritium labeling of a selective ligand for studying high-affinity gamma-hydroxybutyrate (GHB) binding sites. J Med Chem. 2013;56(20):8201-8205.
Stephan DW, Erker G. Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew Chem-Int Edit. 2010;49(1):46-76.
Stephan DW. Frustrated Lewis pairs. J Am Chem Soc. 2015;137(32):10018-10032.
Stephan DW. The broadening reach of frustrated Lewis pair chemistry. Science. 2016;354(6317):8.
Chase PA, Welch GC, Jurca T, Stephan DW. Metal-free catalytic hydrogenation. Angew Chem Int Ed Engl. 2007;46(42):8050-8053.
Sumerin V, Schulz F, Nieger M, Leskela M, Repo T, Rieger B. Facile heterolytic H2 activation by amines and B(C6F5)3. Angew Chem Int Ed Engl. 2008;47(32):6001-6003.
Marek A, Pedersen MHF. Frustrated Lewis pairs-assisted reduction of carbonyl compounds. Tetrahedron. 2015;71(6):917-921.
Ekkert O, Kehr G, Daniliuc CG, et al. Reaction of unsaturated vicinal phosphane/borane frustrated Lewis pairs with benzaldehyde. Z Anorg Allg Chem. 2013;639(14):2455-2462.
Spies P, Erker G, Kehr G, et al. Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane-borane adduct. Chem Commun (Camb). 2007;(47):5072-5074.
Xu BH, Yanez RAA, Nakatsuka H, et al. Reaction of frustrated Lewis pairs with ketones and esters. Chem-Asian J. 2012;7(6):1347-1356.
Nyhlen J, Privalov T. On the possibility of catalytic reduction of carbonyl moieties with tris (pentafluorophenyl)borane and H-2: a computational study. Dalton Trans. 2009;(29):5780-5786.
Longobardi LE, Tang C, Stephan DW. Stoichiometric reductions of alkyl-substituted ketones and aldehydes to borinic esters. Dalton Trans. 2014;43(42):15723-15726.
Mahdi T, Stephan DW. Enabling catalytic ketone hydrogenation by frustrated Lewis pairs. J Am Chem Soc. 2014;136(45):15809-15812.
Scott DJ, Fuchter MJ, Ashley AE. Nonmetal catalyzed hydrogenation of carbonyl compounds. J Am Chem Soc. 2014;136(45):15813-15816.
Gyomore A, Bakos M, Foldes T, Papai I, Domjan A, Soos T. Moisture-tolerant frustrated Lewis pair catalyst for hydrogenation of aldehydes and ketones. ACS Catal. 2015;5(9):5366-5372.
Eros G, Nagy K, Mehdi H, et al. Catalytic hydrogenation with frustrated Lewis pairs: selectivity achieved by size-exclusion design of Lewis acids. Chem-Eur J. 2012;18(2):574-585.
Dryzhakov M, Richmond E, Moran J. Recent advances in direct catalytic dehydrative substitution of alcohols. Synthesis-Stuttgart. 2016;48(7):935-959.
Danopoulos AA, Galsworthy JR, Green MLH, Cafferkey S, Doerrer LH, Hursthouse MB. Equilibria in the B(C6F5)(3)-H2O system: synthesis and crystal structures of H2O center dot B(C6F5)(3) and the anions HOB(C6F5)(3) (-) and (F5C6)(3)B (mu-OH)B(C6F5)(3) (-). Chem Commun. 1998;(22):2529-2530.
Segawa Y, Stephan DW. Metal-free hydrogenation catalysis of polycyclic aromatic hydrocarbons. Chem Commun. 2012;48(98):11963-11965.
Lindqvist M, Sarnela N, Sumerin V, Chernichenko K, Leskela M, Repo T. Heterolytic dihydrogen activation by B(C6F5)(3) and carbonyl compounds. Dalton Trans. 2012;41(15):4310-4312.