MiR-21 binding site SNP within ITGAM associated with psoriasis susceptibility in women
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31211819
PubMed Central
PMC6581264
DOI
10.1371/journal.pone.0218323
PII: PONE-D-19-00656
Knihovny.cz E-resources
- MeSH
- 3' Untranslated Regions genetics MeSH
- Alleles MeSH
- CD11b Antigen genetics MeSH
- Asian People MeSH
- Genetic Predisposition to Disease MeSH
- Genetic Association Studies MeSH
- Genotype MeSH
- Polymorphism, Single Nucleotide genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- MicroRNAs genetics MeSH
- Psoriasis genetics pathology MeSH
- Risk Factors MeSH
- Binding Sites genetics MeSH
- Inflammation genetics pathology MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 3' Untranslated Regions MeSH
- CD11b Antigen MeSH
- MicroRNAs MeSH
- MIRN21 microRNA, human MeSH Browser
BACKGROUND: Great progress has been made in the understanding of inflammatory processes in psoriasis. However, clarifying the role of genetic variability in processes regulating inflammation, including post-transcriptional regulation by microRNA (miRNA), remains a challenge. OBJECTIVES: We therefore investigated single nucleotide polymorphisms (SNPs) with a predicted change in the miRNA/mRNA interaction of genes involved in the psoriasis inflammatory processes. METHODS: Studied SNPs rs2910164 C/G-miR-146a, rs4597342 T/C-ITGAM, rs1368439 G/T-IL12B, rs1468488 C/T-IL17RA were selected using a bioinformatics analysis of psoriasis inflammation-associated genes. These SNPs were then genotyped using a large cohort of women with psoriasis (n = 241) and healthy controls (n = 516). RESULTS: No significant association with psoriasis was observed for rs2910164, rs1368439, and rs1468488 genotypes. However, the major allele T of rs4597342 -ITGAM was associated with approximately 28% higher risk for psoriasis in comparison to the patients with the C allele (OR = 1.28, 95% CI 1.01-1.61, p = 0.037). In case of genotypes, the effect of the T allele indicates the dominant model of disease penetrance as the CT and TT genotypes increase the chance of psoriasis up to 42% in comparison to CC homozygotes of rs4597342 (OR = 1.42, 95% CI = 1.05-1.94, p = 0.025). CONCLUSION: SNP rs4597342 in 3'UTR of ITGAM influencing miR-21 binding may be considered a risk factor for psoriasis development. Upregulated miR-21 in psoriasis is likely to inhibit CD11b production in the case of the rs4597342 T allele which may lead to Mac-1 dysfunction, resulting in an aberrant function of innate immune cells and leading to the production of cytokines involved in psoriasis pathogenesis.
1st Department of Dermatovenereology St Anne's University Hospital Brno Brno Czech Republic
Department of Pathological Physiology Faculty of Medicine Masaryk University Brno Czech Republic
See more in PubMed
Lowes MA, Russell CB, Martin DA, Towne JE, Krueger JG. The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends in Immunology. 2013;34: 174–181. 10.1016/j.it.2012.11.005 PubMed DOI PMC
Bartel DP. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004;116: 281–297. PubMed
Lindsay MA. microRNAs and the immune response. Trends in Immunology. 2008;29: 343–351. 10.1016/j.it.2008.04.004 PubMed DOI
Guinea-Viniegra J, Jiménez M, Schonthaler HB, Navarro R, Delgado Y, Concha-Garzón MJ, et al. Targeting miR-21 to treat psoriasis. Sci Transl Med. 2014;6: 225re1 10.1126/scitranslmed.3008089 PubMed DOI
Meisgen F, Xu N, Wei T, Janson PC, Obad S, Broom O, et al. MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis: Letter to the Editor. Experimental Dermatology. 2012;21: 312–314. 10.1111/j.1600-0625.2012.01462.x PubMed DOI
Sonkoly E, Wei T, Janson PCJ, Sääf A, Lundeberg L, Tengvall-Linder M, et al. MicroRNAs: Novel Regulators Involved in the Pathogenesis of Psoriasis? Zimmer J, editor. PLoS ONE. 2007;2: e610 10.1371/journal.pone.0000610 PubMed DOI PMC
Zibert JR, Løvendorf MB, Litman T, Olsen J, Kaczkowski B, Skov L. MicroRNAs and potential target interactions in psoriasis. Journal of Dermatological Science. 2010;58: 177–185. 10.1016/j.jdermsci.2010.03.004 PubMed DOI
Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, Chapelle A de la. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. PNAS. 2008;105: 7269–7274. 10.1073/pnas.0802682105 PubMed DOI PMC
Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends in Genetics. 2008;24: 489–497. 10.1016/j.tig.2008.07.004 PubMed DOI
Xu B, Feng N-H, Li P-C, Tao J, Wu D, Zhang Z-D, et al. A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo. Prostate. 2010;70: 467–472. 10.1002/pros.21080 PubMed DOI
Brendle A, Lei H, Brandt A, Johansson R, Enquist K, Henriksson R, et al. Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis. 2008;29: 1394–1399. 10.1093/carcin/bgn126 PubMed DOI
Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P, Vodickova L, et al. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis. 2008;29: 579–584. 10.1093/carcin/bgm304 PubMed DOI
Buraczynska M, Zukowski P, Wacinski P, Ksiazek K, Zaluska W. Polymorphism in microRNA-196a2 contributes to the risk of cardiovascular disease in type 2 diabetes patients. J Diabetes Complications. 2014;28: 617–620. 10.1016/j.jdiacomp.2014.05.006 PubMed DOI
Liu M-E, Liao Y-C, Lin R-T, Wang Y-S, Hsi E, Lin H-F, et al. A functional polymorphism of PON1 interferes with microRNA binding to increase the risk of ischemic stroke and carotid atherosclerosis. Atherosclerosis. 2013;228: 161–167. 10.1016/j.atherosclerosis.2013.01.036 PubMed DOI
Ciccacci C, Morganti R, Di Fusco D, D’Amato C, Cacciotti L, Greco C, et al. Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes. Acta Diabetol. 2014;51: 663–671. 10.1007/s00592-014-0582-2 PubMed DOI
Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V, et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nature Genet. 2011;43: 242–U24. 10.1038/ng.762 PubMed DOI
Lofgren SE, Frostegard J, Truedsson L, Pons-Estel BA, D’Alfonso S, Witte T, et al. Genetic association of miRNA-146a with systemic lupus erythematosus in Europeans through decreased expression of the gene. Genes Immun. 2012;13: 268–274. 10.1038/gene.2011.84 PubMed DOI PMC
Zhang W, Yi X, Guo S, Shi Q, Wei C, Li X, et al. A single-nucleotide polymorphism of miR-146a and psoriasis: an association and functional study. J Cell Mol Med. 2014;18: 2225–2234. 10.1111/jcmm.12359 PubMed DOI PMC
Pivarcsi A, Ståhle M, Sonkoly E. Genetic polymorphisms altering microRNA activity in psoriasis–a key to solve the puzzle of missing heritability? Exp Dermatol. 2014;23: 620–624. 10.1111/exd.12469 PubMed DOI
Yu W, Yesupriya A, Wulf A, Hindorff LA, Dowling N, Khoury MJ, et al. GWAS Integrator: a bioinformatics tool to explore human genetic associations reported in published genome-wide association studies. Eur J Hum Genet. 2011;19: 1095–1099. 10.1038/ejhg.2011.91 PubMed DOI PMC
Yu W, Wulf A, Liu T, Khoury MJ, Gwinn M. Gene Prospector: An evidence gateway for evaluating potential susceptibility genes and interacting risk factors for human diseases. BMC Bioinformatics. 2008;9: 528 10.1186/1471-2105-9-528 PubMed DOI PMC
Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-Mehren A, Baron M, et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford). 2015;2015. PubMed PMC
Gong J, Liu C, Liu W, Wu Y, Ma Z, Chen H, et al. An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools. Database (Oxford). 2015;2015. PubMed PMC
Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31: 3555–3557. 10.1093/bioinformatics/btv402 PubMed DOI PMC
R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: URL http://www.R-project.org/.
Zhang L, Jiang Y. MCPerm: A Monte Carlo permutation method for multiple test correlation. R package version 1.1. 4. 2013.
Theodorakopoulou E, Yiu ZZN, Bundy C, Chularojanamontri L, Gittins M, Jamieson LA, et al. Early- and late-onset psoriasis: a cross-sectional clinical and immunocytochemical investigation. Br J Dermatol. 2016;175: 1038–1044. 10.1111/bjd.14886 PubMed DOI
Zhou Y, Wu J, Kucik DF, White NB, Redden DT, Szalai AJ, et al. Multiple Lupus Associated ITGAM Variants Alter Mac-1 Function on Neutrophils. Arthritis Rheum. 2013;65: 2907–2916. 10.1002/art.38117 PubMed DOI PMC
Meisgen F, Xu Landén N, Wang A, Réthi B, Bouez C, Zuccolo M, et al. MiR-146a Negatively Regulates TLR2-Induced Inflammatory Responses in Keratinocytes. The Journal of Investigative Dermatology. 2014;134: 1931–40. 10.1038/jid.2014.89 PubMed DOI
Raaby L, Langkilde A, Kjellerup R b., Vinter H, Khatib S h., Hjuler K f., et al. Changes in mRNA expression precede changes in microRNA expression in lesional psoriatic skin during treatment with adalimumab. Br J Dermatol. 2015;173: 436–447. 10.1111/bjd.13721 PubMed DOI
Srivastava A, Nikamo P, Lohcharoenkal W, Li D, Meisgen F, Xu Landén N, et al. MicroRNA-146a suppresses IL-17-mediated skin inflammation and is genetically associated with psoriasis. J Allergy Clin Immunol. 2017;139: 550–561. 10.1016/j.jaci.2016.07.025 PubMed DOI
Han C, Jin J, Xu S, Liu H, Li N, Cao X. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nature Immunology. 2010;11: 734–742. 10.1038/ni.1908 PubMed DOI
Khan SQ, Khan I, Gupta V. CD11b Activity Modulates Pathogenesis of Lupus Nephritis. Front Med. 2018;5. PubMed PMC
Škoberne M, Somersan S, Almodovar W, Truong T, Petrova K, Henson PM, et al. The apoptotic-cell receptor CR3, but not αvβ5, is a regulator of human dendritic-cell immunostimulatory function. Blood. 2006;108: 947–955. 10.1182/blood-2005-12-4812 PubMed DOI PMC
Varga G, Balkow S, Wild MK, Stadtbaeumer A, Krummen M, Rothoeft T, et al. Active MAC-1 (CD11b/CD18) on DCs inhibits full T-cell activation. Blood. 2007;109: 661–669. 10.1182/blood-2005-12-023044 PubMed DOI
Ehirchiou D, Xiong Y, Xu G, Chen W, Shi Y, Zhang L. CD11b facilitates the development of peripheral tolerance by suppressing Th17 differentiation. J Exp Med. 2007;204: 1519–1524. 10.1084/jem.20062292 PubMed DOI PMC
Nowatzky J, Manches O, Khan SA, Godefroy E, Bhardwaj N. Modulation of human Th17 cell responses through complement receptor 3 (CD11 b/CD18) ligation on monocyte-derived dendritic cells. Journal of Autoimmunity. 2018;92: 57–66. 10.1016/j.jaut.2018.05.005 PubMed DOI PMC
Chen J-Q, Szodoray P, Zeher M. Toll-Like Receptor Pathways in Autoimmune Diseases. Clinic Rev Allerg Immunol. 2016;50: 1–17. PubMed
Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of Psoriasis. Annual Review of Immunology. 2014;32: 227–255. 10.1146/annurev-immunol-032713-120225 PubMed DOI PMC
van Pelt JPA, Kuijpers SHH, van de Kerkhof PCM, de Jong EMGJ. The CD11bCD18-Integrin in the pathogenesis of psoriasis. Journal of Dermatological Science. 1998;16: 135–143. PubMed
Wetzel A, Wetzig T, Haustein UF, Sticherling M, Anderegg U, Simon JC, et al. Increased Neutrophil Adherence in Psoriasis: Role of the Human Endothelial Cell Receptor Thy-1 (CD90). Journal of Investigative Dermatology. 2006;126: 441–452. 10.1038/sj.jid.5700072 PubMed DOI
Van Pelt JPA, De Jong EMGJ, Van Erp PEJ, Van De Kerkhof PCM. Decreased CD11b expression on circulating polymorphonuclear leukocytes in patients with extensive plaque psoriasis. EJD European journal of dermatology. 1997;7: 324–328.
Sjögren F, Ljunghusen O, Baas A, Coble BI, Stendahl O. Expression and Function of ∼ 2 Integrin CD11BCD18 on Leukocytes from Patients with Psoriasis. ACTA DERMATOVENEREOLOGICA-STOCKHOLM. 1999;79: 105–110. PubMed
Fan Y, Li L-H, Pan H-F, Tao J-H, Sun Z-Q, Ye D-Q. Association of ITGAM polymorphism with systemic lupus erythematosus: a meta-analysis. Journal of the European Academy of Dermatology and Venereology. 2011;25: 271–275. 10.1111/j.1468-3083.2010.03776.x PubMed DOI
Batalla A, Coto E, Gómez J, Eirís N, González-Fernández D, Gómez-De Castro C, et al. IL17RA gene variants and anti-TNF response among psoriasis patients. Pharmacogenomics J. 2016; PubMed
Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, et al. A Large-Scale Genetic Association Study Confirms IL12B and Leads to the Identification of IL23R as Psoriasis-Risk Genes. Am J Hum Genet. 2007;80: 273–390. 10.1086/511051 PubMed DOI PMC
Ellinghaus E, Ellinghaus D, Stuart PE, Nair RP, Debrus S, Raelson JV, et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat Genet. 2010;42: 991–995. 10.1038/ng.689 PubMed DOI PMC
Nair RP, Ruether A, Stuart PE, Jenisch S, Tejasvi T, Hiremagalore R, et al. Polymorphisms of the IL12B and IL23R genes are associated with psoriasis. The Journal Of Investigative Dermatology. 2008;128: 1653–1661. 10.1038/sj.jid.5701255 PubMed DOI PMC