Differentiation Induction as a Response to Irradiation in Neural Stem Cells In Vitro
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LO1419
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31261863
PubMed Central
PMC6678856
DOI
10.3390/cancers11070913
PII: cancers11070913
Knihovny.cz E-resources
- Keywords
- apoptosis, differentiation, ionizing radiation, neural stem cells, proliferation, proliferative arrest,
- Publication type
- Journal Article MeSH
Radiotherapy plays a significant role in brain cancer treatment; however, the use of this therapy is often accompanied by neurocognitive decline that is, at least partially, a consequence of radiation-induced damage to neural stem cell populations. Our findings describe features that define the response of neural stem cells (NSCs) to ionizing radiation. We investigated the effects of irradiation on neural stem cells isolated from the ventricular-subventricular zone of mouse brain and cultivated in vitro. Our findings describe the increased transcriptional activity of p53 targets and proliferative arrest after irradiation. Moreover, we show that most cells do not undergo apoptosis after irradiation but rather cease proliferation and start a differentiation program. Induction of differentiation and the demonstrated potential of irradiated cells to differentiate into neurons may represent a mechanism whereby damaged NSCs eliminate potentially hazardous cells and circumvent the debilitating consequences of cumulative DNA damage.
See more in PubMed
Cancer Today. [(accessed on 26 April 2019)]; Available online: http://gco.iarc.fr/today/home.
Mahase S.S., Navrazhina K., Schwartz T.H., Parashar B., Wernicke A.G. Intraoperative brachytherapy for resected brain metastases. Brachytherapy. 2019;18:258–270. doi: 10.1016/j.brachy.2019.01.011. PubMed DOI
Chang E.L., Wefel J.S., Hess K.R., Allen P.K., Lang F.F., Kornguth D.G., Arbuckle R.B., Swint J.M., Shiu A.S., Maor M.H., et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: A randomised controlled trial. Lancet Oncol. 2009;10:1037–1044. doi: 10.1016/S1470-2045(09)70263-3. PubMed DOI
Deangelis L.M., Delattre J.Y., Posner J.B. Radiation-Induced Dementia in Patients Cured of Brain Metastases. Neurology. 1989;39:789–796. doi: 10.1212/WNL.39.6.789. PubMed DOI
Mulhern R.K., Merchant T.E., Gajjar A., Reddick W.E., Kun L.E. Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol. 2004;5:399–408. doi: 10.1016/S1470-2045(04)01507-4. PubMed DOI
Gibson E., Monje M. Effect of cancer therapy on neural stem cells: Implications for cognitive function. Curr. Opin. Oncol. 2012;24:672–678. doi: 10.1097/CCO.0b013e3283571a8e. PubMed DOI PMC
Kut C., Redmond K.J. New Considerations in Radiation Treatment, Planning for Brain Tumors: Neural Progenitor Cell-Containing Niches. Semin. Radiat. Oncol. 2014;24:265–272. doi: 10.1016/j.semradonc.2014.06.007. PubMed DOI PMC
Doetsch F., Garcia-Verdugo J.M., Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 1997;17:5046–5061. doi: 10.1523/JNEUROSCI.17-13-05046.1997. PubMed DOI PMC
Kuhn H.G., Dickinson-Anson H., Gage F.H. Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. J. Neurosci. 1996;16:2027–2033. doi: 10.1523/JNEUROSCI.16-06-02027.1996. PubMed DOI PMC
Llorens-Bobadilla E., Zhao S., Baser A., Saiz-Castro G., Zwadlo K., Martin-Villalba A. Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury. Cell Stem Cell. 2015;17:329–340. doi: 10.1016/j.stem.2015.07.002. PubMed DOI
Codega P., Silva-Vargas V., Paul A., Maldonado-Soto A.R., Deleo A.M., Pastrana E., Doetsch F. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron. 2014;82:545–559. doi: 10.1016/j.neuron.2014.02.039. PubMed DOI PMC
Obernier K., Alvarez-Buylla A. Neural stem cells: Origin, heterogeneity and regulation in the adult mammalian brain. Development. 2019;146:dev156059. doi: 10.1242/dev.156059. PubMed DOI PMC
Yu H. Typical cell signaling response to ionizing radiation: DNA damage and extranuclear damage. Chin. J. Cancer Res. 2012;24:83–89. doi: 10.1007/s11670-012-0083-1. PubMed DOI PMC
Sancar A., Lindsey-Boltz L.A., Unsal-Kacmaz K., Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 2004;73:39–85. doi: 10.1146/annurev.biochem.73.011303.073723. PubMed DOI
Mizumatsu S., Monje M.L., Morhardt D.R., Rola R., Palmer T.D., Fike J.R. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res. 2003;63:4021–4027. PubMed
Bellinzona M., Gobbel G.T., Shinohara C., Fike J.R. Apoptosis is induced in the subependyma of young adult rats by ionizing irradiation. Neurosci. Lett. 1996;208:163–166. doi: 10.1016/0304-3940(96)12572-6. PubMed DOI
Daynac M., Chicheportiche A., Pineda J.R., Gauthier L.R., Boussin F.D., Mouthon M.A. Quiescent neural stem cells exit dormancy upon alteration of GABA(A)R signaling following radiation damage. Stem Cell Res. 2013;11:516–528. doi: 10.1016/j.scr.2013.02.008. PubMed DOI
Lazarini F., Mouthon M.A., Gheusi G., de Chaumont F., Olivo-Marin J.C., Lamarque S., Abrous D.N., Boussin F.D., Lledo P.M. Cellular and Behavioral Effects of Cranial Irradiation of the Subventricular Zone in Adult Mice. PLoS ONE. 2009;4:e7017. doi: 10.1371/journal.pone.0007017. PubMed DOI PMC
Monje M.L., Mizumatsu S., Fike J.R., Palmer T.D. Irradiation induces neural precursor-cell dysfunction. Nat. Med. 2002;8:955–962. doi: 10.1038/nm749. PubMed DOI
Pineda J.R., Daynac M., Chicheportiche A., Cebrian-Silla A., Felice K.S., Garcia-Verdugo J.M., Boussin F.D., Mouthon M.A. Vascular-derived TGF- increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol. Med. 2013;5:548–562. doi: 10.1002/emmm.201202197. PubMed DOI PMC
Schneider L., Pellegatta S., Favaro R., Pisati F., Roncaglia P., Testa G., Nicolis S.K., Finocchiaro G., di Fagagna F.D. DNA Damage in Mammalian Neural Stem Cells Leads to Astrocytic Differentiation Mediated by BMP2 Signaling through JAK-STAT. Stem Cell Rep. 2013;1:123–138. doi: 10.1016/j.stemcr.2013.06.004. PubMed DOI PMC
Dulken B.W., Leeman D.S., Boutet S.C., Hebestreit K., Brunet A. Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage. Cell Rep. 2017;18:777–790. doi: 10.1016/j.celrep.2016.12.060. PubMed DOI PMC
Meletis K., Wirta V., Hede S.M., Nister M., Lundeberg J., Frisen J. P53 suppresses the self-renewal of adult neural stem cells. Development. 2006;133:363–369. doi: 10.1242/dev.02208. PubMed DOI
El-Deiry W.S., Tokino T., Velculescu V.E., Levy D.B., Parsons R., Trent J.M., Lin D., Mercer W.E., Kinzler K.W., Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–825. doi: 10.1016/0092-8674(93)90500-P. PubMed DOI
Galvin K.E., Ye H., Erstad D.J., Feddersen R., Wetmore C. Gli1 induces G2/M arrest and apoptosis in hippocampal but not tumor-derived neural stem cells. Stem Cells. 2008;26:1027–1036. doi: 10.1634/stemcells.2007-0879. PubMed DOI
Engeland K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 2018;25:114–132. doi: 10.1038/cdd.2017.172. PubMed DOI PMC
Ambrosini G., Adida C., Altieri D.C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med. 1997;3:917–921. doi: 10.1038/nm0897-917. PubMed DOI
Shin S., Sung B.J., Cho Y.S., Kim H.J., Ha N.C., Hwang J.I., Chung C.W., Jung Y.K., Oh B.H. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and-7. Biochemistry. 2001;40:1117–1123. doi: 10.1021/bi001603q. PubMed DOI
Kuwabara M., Takahashi K., Inanami O. Induction of apoptosis through the activation of SAPK/JNK followed by the expression of death receptor Fas in X-irradiated cells. J. Radiat. Res. 2003;44:203–209. doi: 10.1269/jrr.44.203. PubMed DOI
Sheridan J.P., Marsters S.A., Pitti R.M., Gurney A., Skubatch M., Baldwin D., Ramakrishnan L., Gray C.L., Baker K., Wood W.I., et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science. 1997;277:818–821. doi: 10.1126/science.277.5327.818. PubMed DOI
Barazzuol L., Ju L.M., Jeggo P.A. A coordinated DNA damage response promotes adult quiescent neural stem cell activation. PLoS Biol. 2017;15:e2001264. doi: 10.1371/journal.pbio.2001264. PubMed DOI PMC
Ichijima Y., Sakasai R., Okita N., Asahina K., Mizutani S., Teraoka H. Phosphorylation of histone H2AX at M phase in human cells without DNA damage response. Biochem. Biophys. Res. Commun. 2005;336:807–812. doi: 10.1016/j.bbrc.2005.08.164. PubMed DOI
Lee C.L., Blum J.M., Kirsch D.G. Role of p53 in regulating tissue response to radiation by mechanisms independent of apoptosis. Transl. Cancer Res. 2013;2:412–421. PubMed PMC
Lin T.X., Chao C., Saito S., Mazur S.J., Murphy M.E., Appella E., Xu Y. P53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol. 2005;7:165–171. doi: 10.1038/ncb1211. PubMed DOI
Wingert S., Thalheimer F.B., Haetscher N., Rehage M., Schroeder T., Rieger M.A. DNA-Damage Response Gene GADD45A Induces Differentiation in Hematopoietic Stem Cells Without Inhibiting Cell Cycle or Survival. Stem Cells. 2016;34:699–710. doi: 10.1002/stem.2282. PubMed DOI PMC
Pereira Dias G., Hollywood R., Bevilaqua M.C., da Luz A.C., Hindges R., Nardi A.E., Thuret S. Consequences of cancer treatments on adult hippocampal neurogenesis: Implications for cognitive function and depressive symptoms. Neuro-Oncology. 2014;16:476–492. doi: 10.1093/neuonc/not321. PubMed DOI PMC
Hermanto U., Frija E.K., Lii M.F.J., Chang E.L., Mahajan A., Woo S.Y. Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain? Int. J. Radiat. Oncol. 2007;67:1135–1144. doi: 10.1016/j.ijrobp.2006.10.032. PubMed DOI
Zanni G., Di Martino E., Omelyanenko A., Andang M., Delle U., Elmroth K., Blomgren K. Lithium increases proliferation of hippocampal neural stem/progenitor cells and rescues irradiation-induced cell cycle arrest in vitro. Oncotarget. 2015;6:37083–37097. doi: 10.18632/oncotarget.5191. PubMed DOI PMC
Naseri S., Moghahi S.M.H.N., Mokhtari T., Roghani M., Shirazi A.R., Malek F., Rastegar T. Radio-Protective Effects of Melatonin on Subventricular Zone in Irradiated Rat: Decrease in Apoptosis and Upregulation of Nestin. J. Mol. Neurosci. 2017;63:198–205. doi: 10.1007/s12031-017-0970-5. PubMed DOI
Conti L., Cattaneo E. Neural stem cell systems: Physiological players or in vitro entities? Nat. Rev. Neurosci. 2010;11:176–187. doi: 10.1038/nrn2761. PubMed DOI
Azari H., Rahman M., Sharififar S., Reynolds B.A. Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J. Vis. Exp. 2010;45:e2393. doi: 10.3791/2393. PubMed DOI PMC
Walker T.L., Kempermann G. One mouse, two cultures: Isolation and culture of adult neural stem cells from the two neurogenic zones of individual mice. J. Vis. Exp. 2014;84:e51225. doi: 10.3791/51225. PubMed DOI PMC