Acute and Chronic Sleep Deprivation-Related Changes in N-methyl-D-aspartate Receptor-Nitric Oxide Signalling in the Rat Cerebral Cortex with Reference to Aging and Brain Lateralization
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
31277281
PubMed Central
PMC6651230
DOI
10.3390/ijms20133273
PII: ijms20133273
Knihovny.cz E-resources
- Keywords
- NMDA receptor subunits, acute and chronic sleep deprivation, aging, brain lateralization, cortex, nitric oxide synthases,
- MeSH
- Alzheimer Disease epidemiology etiology MeSH
- Rats MeSH
- Membrane Glycoproteins genetics metabolism MeSH
- Cerebral Cortex metabolism MeSH
- Nitric Oxide metabolism MeSH
- Rats, Wistar MeSH
- Receptors, N-Methyl-D-Aspartate genetics metabolism MeSH
- Gene Expression Regulation MeSH
- Risk Factors MeSH
- Signal Transduction * MeSH
- Sleep Deprivation metabolism physiopathology MeSH
- Aging metabolism MeSH
- Nitric Oxide Synthase metabolism MeSH
- Age Factors MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Grin3a protein, rat MeSH Browser
- Membrane Glycoproteins MeSH
- N-methyl D-aspartate receptor subtype 2A MeSH Browser
- NR2B NMDA receptor MeSH Browser
- Nitric Oxide MeSH
- Receptors, N-Methyl-D-Aspartate MeSH
- Nitric Oxide Synthase MeSH
Aging and chronic sleep deprivation (SD) are well-recognized risk factors for Alzheimer's disease (AD), with N-methyl-D-aspartate receptor (NMDA) and downstream nitric oxide (NO) signalling implicated in the process. Herein, we investigate the impact of the age- and acute or chronic SD-dependent changes on the expression of NMDA receptor subunits (NR1, NR2A, and NR2B) and on the activities of NO synthase (NOS) isoforms in the cortex of Wistar rats, with reference to cerebral lateralization. In young adult controls, somewhat lateralized seasonal variations in neuronal and endothelial NOS have been observed. In aged rats, overall decreases in NR1, NR2A, and NR2B expression and reduction in neuronal and endothelial NOS activities were found. The age-dependent changes in NR1 and NR2B significantly correlated with neuronal NOS in both hemispheres. Changes evoked by chronic SD (dysfunction of endothelial NOS and the increasing role of NR2A) differed from those evoked by acute SD (increase in inducible NOS in the right side). Collectively, these results demonstrate age-dependent regulation of the level of NMDA receptor subunits and downstream NOS isoforms throughout the rat brain, which could be partly mimicked by SD. As described herein, age and SD alterations in the prevalence of NMDA receptors and NOS could contribute towards cognitive decline in the elderly, as well as in the pathobiology of AD and the neurodegenerative process.
International Centre for Neurotherapeutics Dublin City University 9 Dublin Ireland
National Institute of Mental Health Topolova 748 250 67 Klecany Czech Republic
See more in PubMed
Costandi M. Amyloid awakenings. Nature. 2013;497:19–20. doi: 10.1038/497S19a. PubMed DOI
Huitron-Resendiz S., Sanchez-Alavez M., Gallegos R., Berg G., Crawford E., Giacchino J.L., Games D., Henriksen S.J., Criado J.R. Age-independent and age-related deficits in visuospatial learning, sleep-wake states, thermoregulation and motor activity in PDAPP mice. Brain Res. 2002;928:126–137. doi: 10.1016/S0006-8993(01)03373-X. PubMed DOI
Petrasek T., Vojtechova I., Lobellova V., Popelikova A., Janikova M., Broyka H., Houdek P., Sladek M., Sumova A., Kristofikova Z., et al. The McGill transgenic rat model of Alzheimer’s disease displays cognitive and motor impairments, changes in anxiety and social behavior, and altered circadian activity. Front. Aging Neurosci. 2018;10:250. doi: 10.3389/fnagi.2018.00250. PubMed DOI PMC
Silva R.H., Abilio V.C., Takatsu A.L., Kameda S.R., Grassl C., Chehin A.B., Medrano W.A., Calzavara M.B., Registro S., Andersen M.L., et al. Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology. 2004;46:895–903. doi: 10.1016/j.neuropharm.2003.11.032. PubMed DOI
Butterfield D.A., Drake J., Pocernich C., Castegna A. Evidence of oxidative damage in Alzheimer’s brain: Central role for amyloid beta-peptide. Trends Mol. Med. 2001;7:548–554. doi: 10.1016/S1471-4914(01)02173-6. PubMed DOI
Butterfield D.A., Howard B.J., LaFontaine M.A. Brain oxidative stress in animal models of accelerated aging and the age-related neurodegenerative disorders, Alzheimer’s disease and Huntington’s disease. Curr. Med. Chem. 2001;8:815–858. doi: 10.2174/0929867013373048. PubMed DOI
Kang J.E., Lim M.M., Bateman R.J., Lee J.J., Smyth L.P., Cirrito J.R., Fujiki N., Nishino S., Holtzman D.M. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science. 2009;326:1005–1007. doi: 10.1126/science.1180962. PubMed DOI PMC
Spira A.P., Gamaldo A.A., An Y., Wu M.N., Simonsick E.M., Bilgel M., Zhou Y., Wong D.F., Ferucci L., Resnick S.M. Self-reported sleep and β-amyloid deposition in community-dwelling older adults. JAMA Neurol. 2013 doi: 10.1001/jamaneurol.2013.4258. PubMed DOI PMC
Shen Y.X., Xu S.Y., Wei W., Wang X.L., Wang H., Sun X. Melatonin blocks rat hippocampal neuronal apoptosis induced by amyloid beta-peptide 25-35. J. Pineal Res. 2002;32:163–167. doi: 10.1034/j.1600-079x.2002.1o839.x. PubMed DOI
Matsubara E., Bryant-Thomas T., Pacheco Quinto J., Henry T.L., Poeggeler B., Herbert D., Crus-Sanchez F., Chyan Y.J., Smith M.A., Perry G., et al. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J. Neurochem. 2003;85:1101–1108. doi: 10.1046/j.1471-4159.2003.01654.x. PubMed DOI
Lahiri D.K., Cen D., Ge Y.W., Bondy S.C., Sharman E.H. Dietary supplementation with melatonin reduces levels of amyloid beta-peptides in the murine cerebral cortex. J. Pineal Res. 2004;36:224–231. doi: 10.1111/j.1600-079X.2004.00121.x. PubMed DOI
Quin J., Kulhanek D., Nowlin J., Jones R., Practico D., Rokach J., Stackman R. Chronic melatonin therapy fails to alter amyloid burden or oxidative damage in old Tg2576 mice: Implications for clinical trials. Brain Res. 2005;1037:209–213. doi: 10.1016/j.brainres.2005.01.023. PubMed DOI
Masilamoni J.G., Jesudason E.P., Dhandayuthapani S., Ashok B.S., Vignesh S., Jerabaj C.E., Paul S.F.D., Jayakumar R. The neuroprotective role of melatonin against amyloid β peptide injected mice. Free Radic. Res. 2008;42:661–673. doi: 10.1080/10715760802277388. PubMed DOI
Roh J.H., Jiang H., Finn M.B., Stewart F.R., Mahan T.E., Cirrito J.R., Heda A., Snider B.J., Li M., Yanagisawa M., et al. Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer’s disease. J. Exp. Med. 2014;211:2487–2496. doi: 10.1084/jem.20141788. PubMed DOI PMC
Rothman S.M., Herdener N., Frankola K.A., Mughal M.R., Mattson M.P. Chronic mild sleep restriction accentuates contextual memory impairments and accumulations of cortical Aβ and pTau in a mouse model of Alzheimer’s disease. Brain Res. 2013;1529:200–208. doi: 10.1016/j.brainres.2013.07.010. PubMed DOI PMC
Di Meco A., Joshi Y.B., Pratico D. Sleep deprivation impairs memory, tau metabolism, and synaptic integrity of a mouse model of Alzheimer’s disease with plaques and tangles. Neurobiol. Aging. 2014;35:1813–1820. doi: 10.1016/j.neurobiolaging.2014.02.011. PubMed DOI
Liu S.J., Wang J.Z. Alzheimer-like tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacol. Sin. 2002;23:183–187. PubMed
Zhu L.Q., Wang S.H., Ling Z.Q., Wang D.L., Wang J.Z. Effect of inhibiting melatonin biosynthesis on spatial memory retention and tau phosphorylation in the rat. J. Pineal Res. 2004;37:71–77. doi: 10.1111/j.1600-079X.2004.00136.x. PubMed DOI
Stenberg D. Neuroanatomy and neurochemistry of sleep. Cell. Mol. Life Sci. 2007;64:1187–1204. doi: 10.1007/s00018-007-6530-3. PubMed DOI PMC
Watson C.J., Baghdoyan H.A., Lydic R. Neuropharmacology of sleep and wakefulness. Sleep Med. Clin. 2010;5:513–528. doi: 10.1016/j.jsmc.2010.08.003. PubMed DOI PMC
Cortese B.M., Mitchell T.R., Galloway M.P., Prevost K.E., Fang J., Moore G.J., Uhde T.W. Region-specific alteration in brain glutamate: Possible relationship to risk-taking behavior. Physiol. Behav. 2010;99:445–450. doi: 10.1016/j.physbeh.2009.12.005. PubMed DOI PMC
Dash M.B., Douglas C.L., Vyazovskiy V.V., Cirelli C., Tononi G. Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J. Neurosci. 2009;29:620–629. doi: 10.1523/JNEUROSCI.5486-08.2009. PubMed DOI PMC
Prince T.M., Abel T. The impact of sleep loss on hippocampal function. Learn. Mem. 2013;20:558–569. doi: 10.1101/lm.031674.113. PubMed DOI PMC
Xie M., Yan J., He C., Yang L., Tan G., Li C., Hu Z., Wang J. Short/term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in the hippocampus. Behav. Brain Res. 2015;286:64–70. doi: 10.1016/j.bbr.2015.02.040. PubMed DOI
Xie M., Li C., He C., Yang L., Tan G., Yan J., Wang J., Hu Z. Short-term sleep deprivation disrupts the molecular composition of ionotropic glutamate receptors in the entorhinal cortex and impairs the rat spatial reference memory. Behav. Brain Res. 2016;300:70–76. doi: 10.1016/j.bbr.2015.10.002. PubMed DOI
Cirelli C., Tononi G. Gene expression in the brain across the sleep-waking cycle. Brain Res. 2000;885:303–321. doi: 10.1016/S0006-8993(00)03008-0. PubMed DOI
Magnusson K.R., Nelson S.E., Young A.B. Age-related changes in the protein expression of subunits of the NMDA receptor. Brain Res. Mol. Brain Res. 2002;99:40–45. doi: 10.1016/S0169-328X(01)00344-8. PubMed DOI
Liu P., Smith P.F., Darlington C.L. Glutamate receptor subunits expression in memory-associated brain structures: Regional variations and effects of aging. Synapse. 2008;62:834–841. doi: 10.1002/syn.20563. PubMed DOI
Kristofikova Z., Vrajova M., Sirova J., Vales K., Petrasek T., Schonig K., Tews B., Schwab M., Bartsch D., Stuchlik A., et al. N-methyl-d-aspartate receptor—Nitric oxide synthase pathway in the cortex of NOGO-A-deficient rats in relation to brain laterality and schizophrenia. Front. Behav. Neurosci. 2013;7:90. doi: 10.3389/fnbeh.2013.00090. PubMed DOI PMC
Bi H., Sze C.I. N-methyl-d-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer’s disease. J. Neurol. Sci. 2002;200:11–18. doi: 10.1016/S0022-510X(02)00087-4. PubMed DOI
Mishizen-Eberz A.J., Rissman R.A., Carter T.L., Ikonomovic M.D., Wolfe B.B., Armstrong D.M. Biochemical and molecular studies of NMDA receptor subunits NR1/2A/2B in hippocampal subregions throughout the progression of Alzheimer disease pathology. Neurobiol. Dis. 2004;15:80–92. doi: 10.1016/j.nbd.2003.09.016. PubMed DOI
Hynd M.R., Scott H.L., Dodd P.R. Differential expression of N-methyl-d-aspartate receptor NR2 isoforms in Alzheimer’s disease. J. Neurochem. 2004;90:913–919. doi: 10.1111/j.1471-4159.2004.02548.x. PubMed DOI
Texido L., Martin-Satue M., Alberdi E., Solsona C., Matute C. Amyloid β peptide oligomers directly activate NMDA receptors. Cell Calcium. 2011;49:184–190. doi: 10.1016/j.ceca.2011.02.001. PubMed DOI
Ronicke R., Mikhaylova M., Ronicke S., Meinhardt J., Schroder U.H., Fandrich M., Reiser G., Kreutz M.R., Reymann K.G. Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptor. Neurobiol. Aging. 2011;32:2219–2228. doi: 10.1016/j.neurobiolaging.2010.01.011. PubMed DOI
Allyson J., Dontigny E., Auberson Y., Cyr M., Massicotte G. Blockade of NR2A-containing NMDA receptors induces tau phosphorylation in rat hippocampal slices. Neural Plast. 2010;2010 doi: 10.1155/2010/340168. PubMed DOI PMC
Petrasek T., Skurlova M., Maleninska K., Vojtechova I., Kristofikova Z., Matuskova H., Sirova J., Vales K., Ripova D., Stuchlik A. A rat model of Alzheimer’s disease based on Abeta42 and pro-oxidative substances exhibits cognitive deficit and alterations in glutamatergic and cholinergic neurotransmitter systems. Front. Aging Neurosci. 2016;8:83. doi: 10.3389/fnagi.2016.00083. PubMed DOI PMC
Shinohara Y., Hirase H., Watanabe M., Itakura M., Takahashi M., Shigemoto R. Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors. Proc. Natl. Acad. Sci. USA. 2008;105:19498–19503. doi: 10.1073/pnas.0807461105. PubMed DOI PMC
Kristofikova Z., Ricny J., Ort M. Aging and lateralization of the rat brain on a biochemical level. Neurochem. Res. 2010;35:1138–1146. doi: 10.1007/s11064-010-0165-8. PubMed DOI
Kalinchuk A.V., Stenberg D., Rosenberg P.A., Porkka-Heiskanen T. Inducible, and neuronal nitric oxide synthases (NOS) have complementary roles in recovery sleep induction. Eur. J. Neurosci. 2006;24:1443–1456. doi: 10.1111/j.1460-9568.2006.05019.x. PubMed DOI
Kalinchuk A.V., McCarley R.W., Porkka-Heiskanen T., Basheer R. Sleep deprivation triggers inducible nitric oxide-dependent nitric oxide production in wake-active basal forebrain neurons. J. Neurosci. 2010;30:13254–13264. doi: 10.1523/JNEUROSCI.0014-10.2010. PubMed DOI PMC
Kalinchuk A.V., Porkka-Heiskanen T., McCarley R.W., Basheer R. Cholinergic neurons of the basal forebrain mediate biochemical and electrophysiological mechanisms underlaying sleep homeostasis. Eur. J. Neurosci. 2015;41:182–195. doi: 10.1111/ejn.12766. PubMed DOI PMC
Cespuglio R., Amrouni D., Meiller A., Buguet A., Gautier-Sauvigne S. Nitric oxide in the regulation of the sleep-wake states. Sleep Med. Rev. 2012;16:265–279. doi: 10.1016/j.smrv.2012.01.006. PubMed DOI
Sauvet F., Florence G., Van Beers P., Drogou C., Lagrume C., Chaumes C., Ciret S., Leftheriotis G., Chennaoui M. Total sleep deprivation alters endothelial function in rats: A nonsympathetic mechanism. Sleep. 2014;37:465–473. doi: 10.5665/sleep.3476. PubMed DOI PMC
Rytkonen K.M., Wigren H.K., Kostin A., Porkka-Heiskanen T., Kalinchuk A.V. Nitric oxide-mediated recovery sleep is attenuated with aging. Neurobiol. Aging. 2010;31:2011–2019. doi: 10.1016/j.neurobiolaging.2008.10.006. PubMed DOI
Kristofikova Z., Kozmikova I., Hovorkova P., Ricny J., Zach P., Majer E., Klaschka J., Ripova D. Lateralization of hippocampal nitric oxide mediator system in people with Alzheimer disease, multi-infarct dementia and schizophrenia. Neurochem. Int. 2008;53:118–125. doi: 10.1016/j.neuint.2008.06.009. PubMed DOI
Kristofikova Z., Stastny F., Bubenikova V., Druga R., Klaschka J., Spaniel F. Age- and sex-dependent laterality of rat hippocampal cholinergic system in relation to animal models of neurodevelopmental and neurodegenerative disorders. Neurochem. Res. 2004;29:671–680. doi: 10.1023/B:NERE.0000018837.27383.ff. PubMed DOI
Perusquia M., Greenway C.D., Perkins L.M., Stallone J.N. Systemic hypotensive effects of testosterone are androgen structure-specific and neuronal nitric oxide synthase-dependent. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015;309:189–195. doi: 10.1152/ajpregu.00110.2015. PubMed DOI PMC
Moreau K.L. Modulatory influence of sex hormones on vascular aging. Am. J. Physiol. Heart Circ. Physiol. 2019 doi: 10.1152/ajpheart.00745.2017. PubMed DOI PMC
Ganguly P., Holland F.H., Brenhouse H.C. Functional uncoupling NMDAR NR2A subunit from PSD-95 in the prefrontal cortex: Effects on behavioral dysfunction and parvalbumin loss after early-life stress. Neuropsychopharmacology. 2015;40:2666–2675. doi: 10.1038/npp.2015.134. PubMed DOI PMC
Martisova E., Solas M., Horrillo I., Ortega J.E., Meana J.J., Tordera R.M., Ramirez M.J. Long-lasting effects of early-life stress on glutamatergic/GABAergic circuitry in the rat hippocampus. Neuropharmacology. 2012;62:1944–1953. doi: 10.1016/j.neuropharm.2011.12.019. PubMed DOI
Chauhan P.S., Misra U.K., Kalita J. A study of glutamate levels, NR1, NR2A, NR2B receptors and oxidative stress in a rat model of Japanese encephalitis. Physiol. Behav. 2017;171:256–267. doi: 10.1016/j.physbeh.2017.01.028. PubMed DOI
Costa-Nunes J., Zubareva O., Araujo-Correia M., Valenca A., Schroeter C.A., Pawluski J.L., Vignisse J., Steinbusch H., Hermes D., Phillipines M., et al. Altered emotionality, hippocampus-dependent performance and expression of NMDA receptor subunit mRNAs in chronically stressed mice. Stress. 2014;17:108–116. doi: 10.3109/10253890.2013.872619. PubMed DOI
Christie M.A., McKenna J.T., Connolly N.P., McCarley R.W., Strecker R.E. 24 h of sleep deprivation in the rat increases sleepiness and decreases vigilance: Introduction of the rat-psychomotor vigilance task. J. Sleep Res. 2008;17:376–384. doi: 10.1111/j.1365-2869.2008.00698.x. PubMed DOI PMC