Sentiment analysis as a measure of conservation culture in scientific literature
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
31379018
DOI
10.1111/cobi.13404
Knihovny.cz E-zdroje
- Klíčová slova
- biodiversidad, biodiversity, conservation psychology, culturomics, culturomía, especies en riesgo, extracción de datos de sitios web, language, lenguaje, psicología de la conservación, species at risk, taxones amenazados, threatened taxa, web scraping, 保护心理学, 受胁迫物种, 文化组学, 濒危类群, 生物多样性, 网页抓取, 语言,
- MeSH
- postoj MeSH
- ryby MeSH
- sociální média * MeSH
- zachování přírodních zdrojů MeSH
- žraloci * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Culturomics is emerging as an important field within science, as a way to measure attitudes and beliefs and their dynamics across time and space via quantitative analysis of digitized data from literature, news, film, social media, and more. Sentiment analysis is a culturomics tool that, within the last decade, has provided a means to quantify the polarity of attitudes expressed within various media. Conservation science is a crisis discipline; therefore, accurate and effective communication are paramount. We investigated how conservation scientists communicate their findings through scientific journal articles. We analyzed 15,001 abstracts from articles published from 1998 to 2017 in 6 conservation-focused journals selected based on indexing in scientific databases. Articles were categorized by year, focal taxa, and the conservation status of the focal species. We calculated mean sentiment score for each abstract (mean adjusted z score) based on 4 lexicons (Jockers-Rinker, National Research Council, Bing, and AFINN). We found a significant positive annual trend in the sentiment scores of articles. We also observed a significant trend toward increasing negativity along the spectrum of conservation status categories (i.e., from least concern to extinct). There were some clear differences in the sentiments with which research on different taxa was reported, however. For example, abstracts mentioning lobe finned fishes tended to have high sentiment scores, which could be related to the rediscovery of the coelacanth driving a positive narrative. Contrastingly, abstracts mentioning elasmobranchs had low scores, possibly reflecting the negative sentiment score associated with the word shark. Sentiment analysis has applications in science, especially as it pertains to conservation psychology, and we suggest a new science-based lexicon be developed specifically for the field of conservation.
El Análisis de Opinión como Medida de la Cultura de Conservación en la Literatura Científica Lennox et al. Resumen La culturomía está emergiendo como un campo importante dentro de la ciencia pues es una manera de medir las actitudes, creencias y sus dinámicas a través del tiempo y el espacio por medio de un análisis cuantitativo de datos digitalizados a partir de la literatura, las noticias, las películas, las redes sociales y otros medios. El análisis de opinión es una herramienta de la culturomía que, en la última década, ha proporcionado los medios para cuantificar la polaridad de las actitudes expresadas en varios medios. La ciencia de la conservación es una disciplina de crisis; por lo tanto, la comunicación certera y efectiva es de suma importancia. Investigamos cómo los científicos de la conservación comunican sus hallazgos por medio de los artículos en las revistas científicas. Analizamos 15,001 resúmenes de artículos publicados entre 1998 y 2017 en seis revistas enfocadas en la conservación que fueron seleccionados con base en los índices de las bases de datos científicos. Categorizamos los artículos por año, taxón de enfoque y el estado de conservación de la especie focal. Calculamos la opinión promedio para cada resumen (puntaje z ajustado a la media) con base en cuatro lexicones (Jockers-Rinker, National Research Council, Bing y AFINN). Encontramos una significativa tendencia positiva anual en los puntajes de opinión de los artículos. También observamos una tendencia significativa hacia el incremento en la negatividad a lo largo del espectro de categorías de estado de conservación (es decir, de aquellas de menos preocupación a aquellas en peligro crítico o extintas). Sin embargo, hubo algunas diferencias claras en las opiniones con las cuales se reportaron las investigaciones sobre los diferentes taxones. Por ejemplo, los resúmenes que mencionaron a los peces de aletas lobuladas tendieron hacia los puntajes altos de opinión, lo que podría relacionarse con el redescubrimiento del celacanto como causa de una narrativa positiva. En contraste, los resúmenes que mencionaron a los elasmobranquios tuvieron puntajes bajos, lo que refleja el puntaje de opinión negativa asociado con la palabra tiburón. El análisis de opinión tiene aplicaciones en la ciencia, especialmente como parte de la psicología de la conservación, y sugerimos que se desarrolle un nuevo lexicón basado en la ciencia específicamente para el campo de la conservación.
Department of Zoology University of Oxford 11a Mansfield Road Oxford OX1 3SZ U K
Fish Ecology and Conservation Physiology Laboratory Carleton University Ottawa ON K1S 5B6 Canada
Insilicor Analytics 98 Caroline Avenue Ottawa ON K1Y 0S9 Canada
Oxford Martin School University of Oxford 34 Broad Street Oxford OX1 3BD U K
Zobrazit více v PubMed
Acerbi A, Lampos, V, Garnett P, Bentley RA. 2013. The expression of emotions in 20th century books. PLOS ONE 8 (e59030) https://doi.org/10.1371/journal.pone.0059030.
Aiello LC, Dunbar RI. 1993. Neocortex size, group size, and the evolution of language. Current Anthropology 34:184-193.
Becken S, Stantic B, Chen J, Alaei AR, Connolly RM. 2017. Monitoring the environment and human sentiment on the Great Barrier Reef: assessing the potential of collective sensing. Journal of Environmental Management 203:87-97.
Bravo-Marquez F, Mendoza M, Poblete B. 2014. Meta-level sentiment models for big social data analysis. Knowledge-Based Systems 69:86-99.
Brooks TM, Mittermeier RA, da Fonseca GA, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues AS. 2006. Global biodiversity conservation priorities. Science 313:58-61.
Buijs A, Lawrence A. 2013. Emotional conflicts in rational forestry: towards a research agenda for understanding emotions in environmental conflicts. Forest Policy and Economics 33:104-111.
Campbell B, Veríssimo D. 2015. Black stork down: military discourses in bird conservation in Malta. Human Ecology 43:79-92.
Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer T. 2015. Accelerated modern human-induced species losses: entering the sixth mass extinction. Science Advances 1:e1400253.
Ceballos G, Ehrlich PR, Dirzo R. 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences 114:E6089-E6096.
Ceriaco LM. 2012. Human attitudes towards herpetofauna: the influence of folklore and negative values on the conservation of amphibians and reptiles in Portugal. Journal of Ethnobiology and Ethnomedicine 8:8.
Chamberlain S, Szöcs E. 2013. taxize: taxonomic search and retrieval in R. F1000Research, 2:191. Available from http://f1000research.com/articles/2-191/v2 (accessed November 2018).
Chamberlain S, et al. 2018. taxize: taxonomic information from around the web. R package version 0.9.3. Available from https://github.com/ropensci/taxize (accessed November 2018).
Chamberlain S. 2019. rredlist: ‘IUCN’ Red List Client. R package version 0.5.1.9100. https://github.com/ropensci/rredlist.
Clifford J, Marcus GE. 1986. Writing culture: the poetics and politics of ethnography. University of California Press, Berkeley, California.
Cook CN, Mascia MB, Schwartz MW, Possingham HP, Fuller RA. 2013. Achieving conservation science that bridges the knowledge-action boundary. Conservation Biology 27:669-678.
Cooke SJ, Gallagher AJ, Sopinka NM, Nguyen VM, Skubel RA, Hammerschlag N, Boon S, Young N, Danylchuk AJ. 2017. Considerations for effective science communication. Facets 2:233-248.
Correia RA, Jarić I, Jepson P, Malhado AC, Alves JA, Ladle RJ. 2018. Nomenclature instability in species culturomic assessments: why synonyms matter. Ecological Indicators 90:74-78.
Correia RA, Jepson P, Malhado AC, Ladle RJ. 2017. Internet scientific name frequency as an indicator of cultural salience of biodiversity. Ecological Indicators 78:549-555.
Costa A, Foucart A, Hayakawa S, Aparici M, Apesteguia J, Heafner J, Keysar B. 2014. Your morals depend on language. PLOS ONE 9 (e94842) https://doi.org/10.1371/journal.pone.0094842.
Davies T, et al. 2018. Popular interest in vertebrates does not reflect extinction risk and is associated with bias in conservation investment. PLOS ONE 13 (e0203694) http://doi.org/10.1371/journal.pone.0203694.
Donaldson MR, Burnett NJ, Braun DC, Suski CD, Hinch SG, Cooke SJ, Kerr JT. 2016. Taxonomic bias and international biodiversity conservation research. Facets 1:105-113.
Doubleday ZA, Connell SD. 2018. Let scientific writing evolve, not stagnate. Trends in Ecology & Evolution 33:812-813.
Drijfhout M, Kendal D, Vohl D, Green PT. 2016. Sentiment analysis: ready for conservation. Frontiers in Ecology and the Environment 14:525-526.
Fidino M, Herr SW, Magle SB. 2018. Assessing online opinions of wildlife through social media. Human Dimensions of Wildlife 23:482-490.
Garnett ST, Lindenmayer DB. 2011. Conservation science must engender hope to succeed. Trends in Ecology & Evolution 26:59-60.
Goldman MJ, Turner MD, Daly M. 2018. A critical political ecology of human dimensions of climate change: epistemology, ontology, and ethics. Wiley Interdisciplinary Reviews: Climate Change 9:e526.
Halbwachs M. 1992. On collective memory. University of Chicago Press, Chicago, Illinois.
Hirschberg J, Manning CD. 2015. Advances in natural language processing. Science 349:261-266.
Honsey AE, Loppnow GL, Martin TJ, Schroeder LA, Tomamichel MM, Huempfner NT, Venturelli PA. 2018. Reeling them in: initial insight into the factors affecting presentation attendance at American Fisheries Society Meetings. Fisheries 43:98-105.
Hussein DMEDM. 2018. A survey on sentiment analysis challenges. Journal of King Saud University-Engineering Sciences 30:330-338.
Hvitfeldt E. 2019. textdata: download and load various text datasets. R package version 0.2.0. Available from https://CRAN.R-project.org/package=textdata (accessed September 2019).
IUCN (International Union for Conservation of Nature). 2019. The IUCN red list of threatened species. Version 2019-1. IUCN, Gland, Switzerland.
Jiang H, Lin P, Qiang M. 2015. Public-opinion sentiment analysis for large hydro projects. Journal of Construction Engineering and Management 142:05015013.
Jockers M. 2017. syuzhet: extracts sentiment and sentiment-derived plot arcs from ext. Available from https://CRAN.R-project.org/package=syuzhet (accessed September 2019).
King DW, Tenopir C, Clarke M. 2006. Measuring total reading of journal articles. D-Lib Magazine 12. Available from http://www.dlib.org/dlib/october06/king/10king.html.
Kiritchenko S, Mohammad SM. 2018. Examining gender and race bias in two hundred sentiment analysis systems. arXiv preprint arXiv:1805:04508.
Komonen A, Halme P, Kotiaho JS. 2019. Alarmist by bad design: strongly popularized unsubstantiated claims undermine credibility of conservation science. Rethinking Ecology 4:17-19.
Ladle RJ, Correia RA, Do Y, Joo GJ, Malhado AC, Proulx R, Roberge J-M, Jepson P. 2016. Conservation culturomics. Frontiers in Ecology and the Environment 14:269-275.
Ladle RJ, Jepson P, Whittaker RJ. 2005. Scientists and the media: the struggle for legitimacy in climate change and conservation science. Interdisciplinary Science Reviews 30:231-240.
Larson BM. 2005. The war of the roses: demilitarizing invasion biology. Frontiers in Ecology and the Environment 3:495-500.
Lerner JS, Li Y, Valdesolo P, Kassam KS. 2015. Emotion and decision making. Annual Review of Psychology 66:799-823.
Lineman M, Do Y, Kim JY, Joo GJ. 2015. Talking about climate change and global warming. PLOS ONE 10 (e0138996) https://doi.org/10.1371/journal.pone.0138996.
Liu B. 2012. Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies 5:1-167.
Michel JB, et al. 2011. Quantitative analysis of culture using millions of digitized books. Science 331:176-182.
Mohammad SM, Turney PD. 2013. Crowdsourcing a word-emotion association lexicon. Computational Intelligence 29:436-465.
Neff C. 2015. The Jaws effect: how movie narratives are used to influence policy responses to shark bites in Western Australia. Australian Journal of Political Science 50:114-127.
Nelson MP, Brukskotter JT, Vucetich JA, Chapron G. 2016. Emotions and the ethics of consequence in conservation decisions: lessons from Cecil the Lion. Conservation Letters 9:302-306.
Nielsen FÅ. 2011. A new ANEW: evaluation of a word list for sentiment analysis in microblogs. Proceedings of the ESWC2011 workshop on ‘making sense of microposts’: big things come in small packages. arXiv 1103:2903.
Nolan JM, Jones KE, McDougal KW, McFarlin MJ, Ward MK. 2006. The lovable, the loathsome, and the liminal: emotionality in ethnozoological cognition. Journal of Ethnobiology 26:126-138.
Papworth S, Thomas RL, Turvey ST. 2018. Increased dispositional optimism in conservation professionals. Biodiversity and Conservation 28:1-14.
Petersen AM, Tenendbaum JN, Havlin S, Stanley HE, Perc M. 2012. Languages cool as they expand: allometric scaling and the decreasing need for new words. Scientific Reports 2:943.
Philpott R. 2002. Why sharks may have nothing to fear more than fear itself: an analysis of the effect of human attitudes on the conservation of the Great White Shark. Colorado Journal of International Environmental Law and Policy 13:445-472.
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2019. _nlme: Linear and nonlinear mixed effects models_. R package version 3.1-141. http://CRAN.R-project.org/package=nlme.
Popescu O, Strapparava C. 2014. Time corpora: epochs, opinions and changes. Knowledge-Based Systems 69:3-13.
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rinker TW. 2018a. sentimentr: calculate text polarity sentiment. Version 2.6.1. Available from http://github.com/trinker/sentimentr (accessed September 2019).
Rinker TW. 2018b. lexicon: lexicon data version 1.1.3. Available from http://github.com/trinker/lexicon (accessed September 2019).
Roth WM. 2000. From gesture to scientific language. Journal of Pragmatics 32:1683-1714.
Saunders CD. 2003. The emerging field of conservation psychology. Human Ecology Review 10:137-149.
Schultz PW. 2011. Conservation means behavior. Conservation Biology 25:1080-1083.
Silge J, Robinson D. 2016. tidytext: text mining and analysis using tidy data principles in R. Journal of Statistical Software 1:37. https://doi.org/10.21105/joss00037.
Sindi SS, Dale R. 2016. Culturomics as a data playground for tests of selection: mathematical approaches to detecting selection in word use. Journal of Theoretical Biology 405:140-149.
Soulé ME. 1985. What is conservation biology? BioScience 35:727-734.
Sutherland WJ, et al. 2018. A 2018 horizon scan of emerging issues for global conservation and biological diversity. Trends in Ecology & Evolution 33:47-58.
Swaisgood RR, Sheppard JK. 2010. The culture of conservation biologists: show me the hope! BioScience 60:626-630.
Vansina JM. 1985. Oral tradition as history. University of Wisconsin Press, Madison, Wisconsin.
Vinkers CH, Tijdink JK, Otte WM. 2015. Use of positive and negative words in scientific PubMed abstracts between 1974 and 2014: retrospective analysis. BMJ 351:h6467.
Wickham H. 2009. ggplot2: elegant graphics for data analysis. Springer-Verlag, New York.
Wilson RS. 2008. Balancing emotion and cognition: a case for decision aiding in conservation efforts. Conservation Biology 22:1452-1460.
Zablocki J, Arora S, Barua M. 2016. Factors affecting media coverage of species rediscoveries. Conservation Biology 30:914-917.