Characterization of Phenolic Compounds and Antiproliferative Effects of Salvia pomifera and Salvia fruticosa Extracts
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1087/2018
Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/0976/2018
Ministerstvo Školství, Mládeže a Tělovýchovy
VEGA 1/0359/18
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
VEGA 2/0115/19
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
APVV-15-0308
Agentúra na Podporu Výskumu a Vývoja
UK/366/2018
Univerzita Komenského v Bratislave
PubMed
31408993
PubMed Central
PMC6720736
DOI
10.3390/molecules24162921
PII: molecules24162921
Knihovny.cz E-zdroje
- Klíčová slova
- 12-O-methylcarnosic acid, LC-MS, Salvia fruticosa, Salvia pomifera, cancer, carnosic acid, cell cycle, cytotoxicity, melanoma, microtubules,
- MeSH
- antitumorózní látky chemie izolace a purifikace farmakologie MeSH
- buněčné linie MeSH
- diterpeny abietanové chemie izolace a purifikace farmakologie MeSH
- epitelové buňky účinky léků patologie MeSH
- fenoly chemie izolace a purifikace farmakologie MeSH
- fibroblasty cytologie účinky léků MeSH
- inhibiční koncentrace 50 MeSH
- kontrolní body fáze G2 buněčného cyklu účinky léků MeSH
- lidé MeSH
- methanol chemie MeSH
- nádorové buněčné linie MeSH
- nadzemní části rostlin chemie MeSH
- oxidace-redukce MeSH
- proliferace buněk účinky léků MeSH
- rostlinné extrakty chemie MeSH
- rozpouštědla chemie MeSH
- šalvěj chemie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antitumorózní látky MeSH
- carnosol MeSH Prohlížeč
- diterpeny abietanové MeSH
- fenoly MeSH
- methanol MeSH
- rostlinné extrakty MeSH
- rozpouštědla MeSH
- salvin MeSH Prohlížeč
The phenolic compounds of methanolic extracts of Salvia pomifera and Salvia fruticosa were identified by liquid chromatography tandem mass spectrometry. Carnosic acid and its metabolite carnosol were the most abundant terpene phenolic compounds of S. fruticosa, while they were completely absent in S. pomifera. The main terpene phenolic constituent of S. pomifera was 12-O-methylcarnosic acid and its mass/mass fragmentation pathway was explained. The detailed mechanism of carnosic acid oxidation to carnosol was suggested. The effects of Salvia extracts and/or carnosic acid, the main diterpene phenolic component of S. fruticosa, on the proliferation and cell cycle of two melanoma cell lines (A375, Mel JuSo) and human fibroblast cell line (HFF) were investigated by MTT assay, PI-exclusion assay and flow cytometry cell cycle analysis. Extract of S. fruticosa more efficiently than S. pomifera extract reduced the proliferation of the human melanoma cells. Carnosic acid showed the most significant effect. The first evidence that carnosic acid affects microtubule dynamics and arrests the cell cycle in the G2/M phase was provided. Collectively, our results demonstrate that these two Salvia species are plants of medicinal interest with perspective for further investigation. Carnosic acid could be the compound responsible for the biological activities of S. fruticosa extracts.
Zobrazit více v PubMed
Boukhary R., Raafat K., Ghoneim A.I., Aboul-Ela M., El-Lakany A. Anti-inflammatory and antioxidant activities of Salvia fruticosa: An HPLC determination of phenolic contents. Evid.-Based Complement. Altern. Med. 2016;2016:1–6. doi: 10.1155/2016/7178105. PubMed DOI PMC
Tundis R., Iacopetta D., Sinicropi M.S., Bonesi M., Leporini M., Passalacqua N.G., Ceramella J., Menichini F., Loizzo M.R. Assessment of antioxidant, antitumor and pro-apoptotic effects of Salvia fruticosa Mill. subsp. thomasii (Lacaita) Brullo, Guglielmo, Pavone & Terrasi (Lamiaceae) Food Chem. Toxicol. 2017;106:155–164. PubMed
Duletić-Laušević S., Alimpić Aradski A., Šavikin K., Knežević A., Milutinović M., Stević T., Vukojević J., Marković S., Marin P.D. Composition and biological activities of Libyan Salvia fruticosa Mill. and S. lanigera Poir. extracts. S. Afr. J. Bot. 2018;117:101–109. doi: 10.1016/j.sajb.2018.05.013. DOI
Gali-Muhtasib H. Anticancer and medicinal properties of essential oil and extracts of East Mediterranean sage (Salvia triloba) Adv. Phytomed. 2006;2:169–180.
Ramos A.A., Azqueta A., Pereira-Wilson C., Collins A.R. Polyphenolic compounds from Salvia species protect cellular DNA from oxidation and stimulate DNA repair in cultured human cells. J. Agric. Food Chem. 2010;58:7465–7471. doi: 10.1021/jf100082p. PubMed DOI
Fraihat A., Alatrash L., Abbasi R., Abu-Irmaileh B., Hamed S., Mohammad M., Abu-Rish E., Bustanji Y. Inhibitory effects of methanol extracts of selected plants on proliferation of two human melanoma cell lines. Trop. J. Pharm. Res. 2018;17:1645–1650. doi: 10.4314/tjpr.v17i8.25. DOI
Alimpic A.Z., Kotur N., Stanković B., Marin P.D., Matevski V., Al Sheef N., Duletić-Laušević S. The in vitro antioxidative and cytotoxic effects of selected Salvia species water extracts. J. Appl. Bot. Food Qual. 2015;88:115–119.
Abu-Dahab R., Afifi F., Kasabri V., Majdalawi L., Naffa R. Comparison of the antiproliferative activity of crude ethanol extracts of nine Salvia species grown in Jordan against breast cancer cell line models. Pharmacogn. Mag. 2012;8:319. doi: 10.4103/0973-1296.103664. PubMed DOI PMC
Xavier C.P.R., Lima C.F., Fernandes-Ferreira M., Pereira-Wilson C. Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: The role in MAPK/ERK pathway. Nutr. Cancer. 2009;61:564–571. doi: 10.1080/01635580802710733. PubMed DOI
Ramos A.A., Pedro D., Collins A.R., Pereira-Wilson C. Protection by Salvia extracts against oxidative and alkylation damage to DNA in human HCT15 and CO115 cells. J. Toxicol. Env. Heal Part A Curr. Issues. 2012;75:765–775. doi: 10.1080/15287394.2012.689804. PubMed DOI
Stagos D., Portesis N., Spanou C., Mossialos D., Aligiannis N., Chaita E., Panagoulis C., Reri E., Skaltsounis L., Tsatsakis A.M., et al. Correlation of total polyphenolic content with antioxidant and antibacterial activity of 24 extracts from Greek domestic Lamiaceae species. Food Chem. Toxicol. 2012;50:4115–4124. doi: 10.1016/j.fct.2012.08.033. PubMed DOI
Arakawa N., Okubo A., Yasuhira S., Takahashi K., Amano H., Akasaka T., Masuda T., Shibazaki M., Maesawa C. Carnosic acid, an inducer of Nad(P)H quinone oxidoreductase 1, enhances the cytotoxicity of β-lapachone in melanoma cell lines. Oncol. Lett. 2018;15:2393–2400. doi: 10.3892/ol.2017.7618. PubMed DOI PMC
Petiwala S.M., Johnson J.J. Diterpenes from rosemary (Rosmarinus officinalis): Defining their potential for anti-cancer activity. Cancer Lett. 2015;367:93–102. doi: 10.1016/j.canlet.2015.07.005. PubMed DOI
Birtić S., Dussort P., Pierre F.X., Bily A.C., Roller M. Carnosic acid. Phytochemistry. 2015;115:9–19. doi: 10.1016/j.phytochem.2014.12.026. PubMed DOI
Barni M.V., Carlini M.J., Cafferata E.G., Puricelli L., Moreno S. Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells. Oncol. Rep. 2012;27:1041–1048. doi: 10.3892/or.2012.1630. PubMed DOI PMC
Bahri S., Jameleddine S., Shlyonsky V. Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms. Biomed. Pharmacother. 2016;84:569–582. doi: 10.1016/j.biopha.2016.09.067. PubMed DOI
Bahri S., Mies F., Ben Ali R., Mlika M., Jameleddine S., Mc Entee K., Shlyonsky V. Rosmarinic acid potentiates carnosic acid induced apoptosis in lung fibroblasts. PLoS ONE. 2017;12:1–23. doi: 10.1371/journal.pone.0184368. PubMed DOI PMC
Park S.Y., Song H., Sung M.K., Kang Y.H., Lee K.W., Park J.H.Y. Carnosic acid inhibits the epithelial-mesenchymal transition in B16F10 melanoma cells: A possible mechanism for the inhibition of cell migration. Int. J. Mol. Sci. 2014;15:12698–12713. doi: 10.3390/ijms150712698. PubMed DOI PMC
Pesakhov S., Nachliely M., Barvish Z., Aqaqe N., Schwartzman B., Voronov E., Sharoni Y., Studzinski G.P., Fishman D., Danilenko M. Cancer-selective cytotoxic Ca2+ overload in acute myeloid leukemia cells and attenuation of disease progression in mice by synergistically acting polyphenols curcumin and carnosic acid. Oncotarget. 2016;7:31847–31861. doi: 10.18632/oncotarget.7240. PubMed DOI PMC
Kar S., Palit S., Ball W.B., Das P.K. Carnosic acid modulates Akt/IKK/NF-κB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis. 2012;17:735–747. doi: 10.1007/s10495-012-0715-4. PubMed DOI
Domingues B., Lopes J., Soares P., Populo H. Melanoma treatment in review. ImmunoTargets Ther. 2018;7:35–49. doi: 10.2147/ITT.S134842. PubMed DOI PMC
Sarrou E., Martens S., Chatzopoulou P. Metabolite profiling and antioxidative activity of Sage (Salvia fruticosa Mill.) under the influence of genotype and harvesting period. Ind. Crops Prod. 2016;94:240–250. doi: 10.1016/j.indcrop.2016.08.022. DOI
Moharram F.A., Mahmoud I.I., Mahmoud M.R., Sabry S. Polyphenolic profile and biological study of Salvia fruticosa. NPC Nat. Prod. Commun. 2006;1 doi: 10.1177/1934578X0600100909. DOI
Vergine M., Nicolì F., Negro C., Luvisi A., Nutricati E., Annunziata Accogli R., Sabella E., Miceli A. Phytochemical profiles and antioxidant activity of Salvia species from southern Italy. Rec. Nat. Prod. 2019;13:205–215. doi: 10.25135/rnp.96.18.07.119. DOI
Lu Y., Foo L.Y. Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry. 1999;51:91–94. doi: 10.1016/S0031-9422(98)00730-4. DOI
Exarchou V., Nenadis N., Tsimidou M., Gerothanassis I.P., Troganis A., Boskou D. Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory. J. Agric. Food Chem. 2002;50:5294–5299. doi: 10.1021/jf020408a. PubMed DOI
Lee S.H., Kim H.W., Lee M.K., Kim Y.J., Asamenew G., Cha Y.S., Kim J.B. Phenolic profiling and quantitative determination of common sage (Salvia plebeia R. Br.) by UPLC-DAD-QTOF/MS. Eur. Food Res. Technol. 2018;244:1637–1646. doi: 10.1007/s00217-018-3076-6. DOI
Exarchou V., Kanetis L., Charalambous Z., Apers S., Pieters L., Gekas V., Goulas V. HPLC-SPE-NMR characterization of major metabolites in Salvia fruticosa Mill. extract with antifungal potential: Relevance of carnosic acid, carnosol, and hispidulin. J. Agric. Food Chem. 2015;63:457–463. doi: 10.1021/jf5050734. PubMed DOI
Kontogianni V.G., Tomic G., Nikolic I., Nerantzaki A.A., Sayyad N., Stosic-Grujicic S., Stojanovic I., Gerothanassis I.P., Tzakos A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013;136:120–129. doi: 10.1016/j.foodchem.2012.07.091. PubMed DOI
Ayatollahi S.A., Shojaii A., Kobarfard F., Mohammadzadeh M., Choudhary M.I. Two flavones from Salvia leriaefolia. Iran. J. Pharm. Res. 2009;8:179–184.
Cuvelier M.E., Richard H., Berset C. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. JAOCS J. Am. Oil Chem. Soc. 1996;73:645–652. doi: 10.1007/BF02518121. DOI
Topçu G., Öztürk M., Kuşman T., Demirkoz A.A.B., Kolak U., Ulubelen A. Terpenoids, essential oil composition, fatty acid profile, and biological activities of Anatolian Salvia fruticosa Mill. Turk. J. Chem. 2013;37:619–632. doi: 10.3906/kim-1303-25. DOI
Liu A.H., Guo H., Ye M., Lin Y.H., Sun J.H., Xu M., Guo D.A. Detection, characterization and identification of phenolic acids in danshen using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. J. Chromatogr. A. 2007;1161:170–182. doi: 10.1016/j.chroma.2007.05.081. PubMed DOI
Šulniūtė V., Pukalskas A., Venskutonis P.R. Phytochemical composition of fractions isolated from ten Salvia species by supercritical carbon dioxide and pressurized liquid extraction methods. Food Chem. 2017;224:37–47. doi: 10.1016/j.foodchem.2016.12.047. PubMed DOI
Pizzale L., Bortolomeazzi R., Vichi S., Überegger E., Conte L.S. Antioxidant activity of sage (Salvia officinalis and S fruticosa) and oregano (Origanum onites and O. indercedens) extracts related to their phenolic compound content. J. Sci. Food Agric. 2002;82:1645–1651. doi: 10.1002/jsfa.1240. DOI
Rangarajan R., Dodbiba E., Smuts J.P., Lang J.C., Zhang Y., Armstrong D.W. Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC. J. Agric. Food Chem. 2012;60:9305–9314. PubMed
Munné-Bosch S., Alegre L., Schwarz K. The formation of phenolic diterpenes in Rosmarinus officinalis L. under Mediterranean climate. Eur. Food Res. Technol. 2000;210:263–267. doi: 10.1007/s002179900108. DOI
Ivanović J., Dilas S., Jadranin M., Vajs V., Babović N., Petrović S., Žižović I. Supercritical carbon dioxide extraction of antioxidants from rosemary (Rosmarinus officinalis L.) and sage (Salvia officinalis L.) J. Serb. Chem. Soc. 2009;74:717–732. doi: 10.2298/JSC0907717I. DOI
Cvetkovikj I., Stefkov G., Acevska J., Stanoeva J.P., Karapandzova M., Stefova M., Dimitrovska A., Kulevanova S. Polyphenolic characterization and chromatographic methods for fast assessment of culinary Salvia species from South East Europe. J. Chromatogr. A. 2013;1282:38–45. doi: 10.1016/j.chroma.2012.12.068. PubMed DOI
Abreu M.E., Müller M., Alegre L., Munné-Bosch S. Phenolic diterpene and α-tocopherol contents in leaf extracts of 60 Salvia species. J. Sci. Food Agric. 2008;88:2648–2653. doi: 10.1002/jsfa.3384. DOI
Masuda T., Inaba Y., Takeda Y. Antioxidant mechanism of carnosic acid: Structural identification of two oxidation products. J. Agric. Food Chem. 2001;49:5560–5565. doi: 10.1021/jf010693i. PubMed DOI
Loussouarn M., Krieger-Liszkay A., Svilar L., Bily A., Birtić S., Havaux M. Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant Physiol. 2017;175:1381–1394. doi: 10.1104/pp.17.01183. PubMed DOI PMC
Lin K.-I., Lin C.-C., Kuo S.-M., Lai J.-C., Wang Y.-Q., You H.-L., Hsu M.-L., Chen C.-H., Shiu L.-Y. Carnosic acid impedes cell growth and enhances anticancer effects of carmustine and lomustine in melanoma. Biosci. Rep. 2018;38:BSR20180005. doi: 10.1042/BSR20180005. PubMed DOI PMC
Cristina C. Rohena and Susan, L. Mooberry Recent progress with microtubule stabilizers: New compounds, binding modes and cellular activities. Nat. Prod. Rep. 2014;31:335–355. PubMed PMC
Visanji J.M., Thompson D.G., Padfield P.J. Induction of G2/M phase cell cycle arrest by carnosol and carnosic acid is associated with alteration of cyclin A and cyclin B1 levels. Cancer Lett. 2006;237:130–136. doi: 10.1016/j.canlet.2005.05.045. PubMed DOI
Xiang Q., Ma Y., Dong J., Shen R. Carnosic acid induces apoptosis associated with mitochondrial dysfunction and Akt inactivation in HepG2 cells. Int. J. Food Sci. Nutr. 2015;66:76–84. doi: 10.3109/09637486.2014.953452. PubMed DOI
Gao Q., Liu H., Yao Y., Geng L., Zhang X., Jiang L., Shi B., Yang F. Carnosic acid induces autophagic cell death through inhibition of the Akt/mTOR pathway in human hepatoma cells. J. Appl. Toxicol. 2015;35:485–492. doi: 10.1002/jat.3049. PubMed DOI
Akaberi M., Mehri S., Iranshahi M. Multiple pro-apoptotic targets of abietane diterpenoids from Salvia species. Fitoterapia. 2015;100:118–132. doi: 10.1016/j.fitote.2014.11.008. PubMed DOI
Hammerová J., Uldrijan S., Táborská E., Slaninová I. Benzo[c]phenanthridine alkaloids exhibit strong anti-proliferative activity in malignant melanoma cells regardless of their p53 status. J. Dermatol. Sci. 2011;62:22–35. doi: 10.1016/j.jdermsci.2011.01.006. PubMed DOI
Slanina J., Pachnikova G., Čarnecka M., Porubova Koubikova L., Adamkova L., Humpa O., Šmejkal K., Slaninova I. Identification of key structural characteristics of Schisandra chinensis lignans involved in P-glycoprotein inhibition. J. Nat. Prod. 2014;77:2255–2263. doi: 10.1021/np500521v. PubMed DOI