Characterization of Phenolic Compounds and Antiproliferative Effects of Salvia pomifera and Salvia fruticosa Extracts

. 2019 Aug 12 ; 24 (16) : . [epub] 20190812

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31408993

Grantová podpora
MUNI/A/1087/2018 Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/0976/2018 Ministerstvo Školství, Mládeže a Tělovýchovy
VEGA 1/0359/18 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
VEGA 2/0115/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
APVV-15-0308 Agentúra na Podporu Výskumu a Vývoja
UK/366/2018 Univerzita Komenského v Bratislave

The phenolic compounds of methanolic extracts of Salvia pomifera and Salvia fruticosa were identified by liquid chromatography tandem mass spectrometry. Carnosic acid and its metabolite carnosol were the most abundant terpene phenolic compounds of S. fruticosa, while they were completely absent in S. pomifera. The main terpene phenolic constituent of S. pomifera was 12-O-methylcarnosic acid and its mass/mass fragmentation pathway was explained. The detailed mechanism of carnosic acid oxidation to carnosol was suggested. The effects of Salvia extracts and/or carnosic acid, the main diterpene phenolic component of S. fruticosa, on the proliferation and cell cycle of two melanoma cell lines (A375, Mel JuSo) and human fibroblast cell line (HFF) were investigated by MTT assay, PI-exclusion assay and flow cytometry cell cycle analysis. Extract of S. fruticosa more efficiently than S. pomifera extract reduced the proliferation of the human melanoma cells. Carnosic acid showed the most significant effect. The first evidence that carnosic acid affects microtubule dynamics and arrests the cell cycle in the G2/M phase was provided. Collectively, our results demonstrate that these two Salvia species are plants of medicinal interest with perspective for further investigation. Carnosic acid could be the compound responsible for the biological activities of S. fruticosa extracts.

Zobrazit více v PubMed

Boukhary R., Raafat K., Ghoneim A.I., Aboul-Ela M., El-Lakany A. Anti-inflammatory and antioxidant activities of Salvia fruticosa: An HPLC determination of phenolic contents. Evid.-Based Complement. Altern. Med. 2016;2016:1–6. doi: 10.1155/2016/7178105. PubMed DOI PMC

Tundis R., Iacopetta D., Sinicropi M.S., Bonesi M., Leporini M., Passalacqua N.G., Ceramella J., Menichini F., Loizzo M.R. Assessment of antioxidant, antitumor and pro-apoptotic effects of Salvia fruticosa Mill. subsp. thomasii (Lacaita) Brullo, Guglielmo, Pavone & Terrasi (Lamiaceae) Food Chem. Toxicol. 2017;106:155–164. PubMed

Duletić-Laušević S., Alimpić Aradski A., Šavikin K., Knežević A., Milutinović M., Stević T., Vukojević J., Marković S., Marin P.D. Composition and biological activities of Libyan Salvia fruticosa Mill. and S. lanigera Poir. extracts. S. Afr. J. Bot. 2018;117:101–109. doi: 10.1016/j.sajb.2018.05.013. DOI

Gali-Muhtasib H. Anticancer and medicinal properties of essential oil and extracts of East Mediterranean sage (Salvia triloba) Adv. Phytomed. 2006;2:169–180.

Ramos A.A., Azqueta A., Pereira-Wilson C., Collins A.R. Polyphenolic compounds from Salvia species protect cellular DNA from oxidation and stimulate DNA repair in cultured human cells. J. Agric. Food Chem. 2010;58:7465–7471. doi: 10.1021/jf100082p. PubMed DOI

Fraihat A., Alatrash L., Abbasi R., Abu-Irmaileh B., Hamed S., Mohammad M., Abu-Rish E., Bustanji Y. Inhibitory effects of methanol extracts of selected plants on proliferation of two human melanoma cell lines. Trop. J. Pharm. Res. 2018;17:1645–1650. doi: 10.4314/tjpr.v17i8.25. DOI

Alimpic A.Z., Kotur N., Stanković B., Marin P.D., Matevski V., Al Sheef N., Duletić-Laušević S. The in vitro antioxidative and cytotoxic effects of selected Salvia species water extracts. J. Appl. Bot. Food Qual. 2015;88:115–119.

Abu-Dahab R., Afifi F., Kasabri V., Majdalawi L., Naffa R. Comparison of the antiproliferative activity of crude ethanol extracts of nine Salvia species grown in Jordan against breast cancer cell line models. Pharmacogn. Mag. 2012;8:319. doi: 10.4103/0973-1296.103664. PubMed DOI PMC

Xavier C.P.R., Lima C.F., Fernandes-Ferreira M., Pereira-Wilson C. Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: The role in MAPK/ERK pathway. Nutr. Cancer. 2009;61:564–571. doi: 10.1080/01635580802710733. PubMed DOI

Ramos A.A., Pedro D., Collins A.R., Pereira-Wilson C. Protection by Salvia extracts against oxidative and alkylation damage to DNA in human HCT15 and CO115 cells. J. Toxicol. Env. Heal Part A Curr. Issues. 2012;75:765–775. doi: 10.1080/15287394.2012.689804. PubMed DOI

Stagos D., Portesis N., Spanou C., Mossialos D., Aligiannis N., Chaita E., Panagoulis C., Reri E., Skaltsounis L., Tsatsakis A.M., et al. Correlation of total polyphenolic content with antioxidant and antibacterial activity of 24 extracts from Greek domestic Lamiaceae species. Food Chem. Toxicol. 2012;50:4115–4124. doi: 10.1016/j.fct.2012.08.033. PubMed DOI

Arakawa N., Okubo A., Yasuhira S., Takahashi K., Amano H., Akasaka T., Masuda T., Shibazaki M., Maesawa C. Carnosic acid, an inducer of Nad(P)H quinone oxidoreductase 1, enhances the cytotoxicity of β-lapachone in melanoma cell lines. Oncol. Lett. 2018;15:2393–2400. doi: 10.3892/ol.2017.7618. PubMed DOI PMC

Petiwala S.M., Johnson J.J. Diterpenes from rosemary (Rosmarinus officinalis): Defining their potential for anti-cancer activity. Cancer Lett. 2015;367:93–102. doi: 10.1016/j.canlet.2015.07.005. PubMed DOI

Birtić S., Dussort P., Pierre F.X., Bily A.C., Roller M. Carnosic acid. Phytochemistry. 2015;115:9–19. doi: 10.1016/j.phytochem.2014.12.026. PubMed DOI

Barni M.V., Carlini M.J., Cafferata E.G., Puricelli L., Moreno S. Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells. Oncol. Rep. 2012;27:1041–1048. doi: 10.3892/or.2012.1630. PubMed DOI PMC

Bahri S., Jameleddine S., Shlyonsky V. Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms. Biomed. Pharmacother. 2016;84:569–582. doi: 10.1016/j.biopha.2016.09.067. PubMed DOI

Bahri S., Mies F., Ben Ali R., Mlika M., Jameleddine S., Mc Entee K., Shlyonsky V. Rosmarinic acid potentiates carnosic acid induced apoptosis in lung fibroblasts. PLoS ONE. 2017;12:1–23. doi: 10.1371/journal.pone.0184368. PubMed DOI PMC

Park S.Y., Song H., Sung M.K., Kang Y.H., Lee K.W., Park J.H.Y. Carnosic acid inhibits the epithelial-mesenchymal transition in B16F10 melanoma cells: A possible mechanism for the inhibition of cell migration. Int. J. Mol. Sci. 2014;15:12698–12713. doi: 10.3390/ijms150712698. PubMed DOI PMC

Pesakhov S., Nachliely M., Barvish Z., Aqaqe N., Schwartzman B., Voronov E., Sharoni Y., Studzinski G.P., Fishman D., Danilenko M. Cancer-selective cytotoxic Ca2+ overload in acute myeloid leukemia cells and attenuation of disease progression in mice by synergistically acting polyphenols curcumin and carnosic acid. Oncotarget. 2016;7:31847–31861. doi: 10.18632/oncotarget.7240. PubMed DOI PMC

Kar S., Palit S., Ball W.B., Das P.K. Carnosic acid modulates Akt/IKK/NF-κB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis. 2012;17:735–747. doi: 10.1007/s10495-012-0715-4. PubMed DOI

Domingues B., Lopes J., Soares P., Populo H. Melanoma treatment in review. ImmunoTargets Ther. 2018;7:35–49. doi: 10.2147/ITT.S134842. PubMed DOI PMC

Sarrou E., Martens S., Chatzopoulou P. Metabolite profiling and antioxidative activity of Sage (Salvia fruticosa Mill.) under the influence of genotype and harvesting period. Ind. Crops Prod. 2016;94:240–250. doi: 10.1016/j.indcrop.2016.08.022. DOI

Moharram F.A., Mahmoud I.I., Mahmoud M.R., Sabry S. Polyphenolic profile and biological study of Salvia fruticosa. NPC Nat. Prod. Commun. 2006;1 doi: 10.1177/1934578X0600100909. DOI

Vergine M., Nicolì F., Negro C., Luvisi A., Nutricati E., Annunziata Accogli R., Sabella E., Miceli A. Phytochemical profiles and antioxidant activity of Salvia species from southern Italy. Rec. Nat. Prod. 2019;13:205–215. doi: 10.25135/rnp.96.18.07.119. DOI

Lu Y., Foo L.Y. Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry. 1999;51:91–94. doi: 10.1016/S0031-9422(98)00730-4. DOI

Exarchou V., Nenadis N., Tsimidou M., Gerothanassis I.P., Troganis A., Boskou D. Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory. J. Agric. Food Chem. 2002;50:5294–5299. doi: 10.1021/jf020408a. PubMed DOI

Lee S.H., Kim H.W., Lee M.K., Kim Y.J., Asamenew G., Cha Y.S., Kim J.B. Phenolic profiling and quantitative determination of common sage (Salvia plebeia R. Br.) by UPLC-DAD-QTOF/MS. Eur. Food Res. Technol. 2018;244:1637–1646. doi: 10.1007/s00217-018-3076-6. DOI

Exarchou V., Kanetis L., Charalambous Z., Apers S., Pieters L., Gekas V., Goulas V. HPLC-SPE-NMR characterization of major metabolites in Salvia fruticosa Mill. extract with antifungal potential: Relevance of carnosic acid, carnosol, and hispidulin. J. Agric. Food Chem. 2015;63:457–463. doi: 10.1021/jf5050734. PubMed DOI

Kontogianni V.G., Tomic G., Nikolic I., Nerantzaki A.A., Sayyad N., Stosic-Grujicic S., Stojanovic I., Gerothanassis I.P., Tzakos A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013;136:120–129. doi: 10.1016/j.foodchem.2012.07.091. PubMed DOI

Ayatollahi S.A., Shojaii A., Kobarfard F., Mohammadzadeh M., Choudhary M.I. Two flavones from Salvia leriaefolia. Iran. J. Pharm. Res. 2009;8:179–184.

Cuvelier M.E., Richard H., Berset C. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. JAOCS J. Am. Oil Chem. Soc. 1996;73:645–652. doi: 10.1007/BF02518121. DOI

Topçu G., Öztürk M., Kuşman T., Demirkoz A.A.B., Kolak U., Ulubelen A. Terpenoids, essential oil composition, fatty acid profile, and biological activities of Anatolian Salvia fruticosa Mill. Turk. J. Chem. 2013;37:619–632. doi: 10.3906/kim-1303-25. DOI

Liu A.H., Guo H., Ye M., Lin Y.H., Sun J.H., Xu M., Guo D.A. Detection, characterization and identification of phenolic acids in danshen using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. J. Chromatogr. A. 2007;1161:170–182. doi: 10.1016/j.chroma.2007.05.081. PubMed DOI

Šulniūtė V., Pukalskas A., Venskutonis P.R. Phytochemical composition of fractions isolated from ten Salvia species by supercritical carbon dioxide and pressurized liquid extraction methods. Food Chem. 2017;224:37–47. doi: 10.1016/j.foodchem.2016.12.047. PubMed DOI

Pizzale L., Bortolomeazzi R., Vichi S., Überegger E., Conte L.S. Antioxidant activity of sage (Salvia officinalis and S fruticosa) and oregano (Origanum onites and O. indercedens) extracts related to their phenolic compound content. J. Sci. Food Agric. 2002;82:1645–1651. doi: 10.1002/jsfa.1240. DOI

Rangarajan R., Dodbiba E., Smuts J.P., Lang J.C., Zhang Y., Armstrong D.W. Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC. J. Agric. Food Chem. 2012;60:9305–9314. PubMed

Munné-Bosch S., Alegre L., Schwarz K. The formation of phenolic diterpenes in Rosmarinus officinalis L. under Mediterranean climate. Eur. Food Res. Technol. 2000;210:263–267. doi: 10.1007/s002179900108. DOI

Ivanović J., Dilas S., Jadranin M., Vajs V., Babović N., Petrović S., Žižović I. Supercritical carbon dioxide extraction of antioxidants from rosemary (Rosmarinus officinalis L.) and sage (Salvia officinalis L.) J. Serb. Chem. Soc. 2009;74:717–732. doi: 10.2298/JSC0907717I. DOI

Cvetkovikj I., Stefkov G., Acevska J., Stanoeva J.P., Karapandzova M., Stefova M., Dimitrovska A., Kulevanova S. Polyphenolic characterization and chromatographic methods for fast assessment of culinary Salvia species from South East Europe. J. Chromatogr. A. 2013;1282:38–45. doi: 10.1016/j.chroma.2012.12.068. PubMed DOI

Abreu M.E., Müller M., Alegre L., Munné-Bosch S. Phenolic diterpene and α-tocopherol contents in leaf extracts of 60 Salvia species. J. Sci. Food Agric. 2008;88:2648–2653. doi: 10.1002/jsfa.3384. DOI

Masuda T., Inaba Y., Takeda Y. Antioxidant mechanism of carnosic acid: Structural identification of two oxidation products. J. Agric. Food Chem. 2001;49:5560–5565. doi: 10.1021/jf010693i. PubMed DOI

Loussouarn M., Krieger-Liszkay A., Svilar L., Bily A., Birtić S., Havaux M. Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant Physiol. 2017;175:1381–1394. doi: 10.1104/pp.17.01183. PubMed DOI PMC

Lin K.-I., Lin C.-C., Kuo S.-M., Lai J.-C., Wang Y.-Q., You H.-L., Hsu M.-L., Chen C.-H., Shiu L.-Y. Carnosic acid impedes cell growth and enhances anticancer effects of carmustine and lomustine in melanoma. Biosci. Rep. 2018;38:BSR20180005. doi: 10.1042/BSR20180005. PubMed DOI PMC

Cristina C. Rohena and Susan, L. Mooberry Recent progress with microtubule stabilizers: New compounds, binding modes and cellular activities. Nat. Prod. Rep. 2014;31:335–355. PubMed PMC

Visanji J.M., Thompson D.G., Padfield P.J. Induction of G2/M phase cell cycle arrest by carnosol and carnosic acid is associated with alteration of cyclin A and cyclin B1 levels. Cancer Lett. 2006;237:130–136. doi: 10.1016/j.canlet.2005.05.045. PubMed DOI

Xiang Q., Ma Y., Dong J., Shen R. Carnosic acid induces apoptosis associated with mitochondrial dysfunction and Akt inactivation in HepG2 cells. Int. J. Food Sci. Nutr. 2015;66:76–84. doi: 10.3109/09637486.2014.953452. PubMed DOI

Gao Q., Liu H., Yao Y., Geng L., Zhang X., Jiang L., Shi B., Yang F. Carnosic acid induces autophagic cell death through inhibition of the Akt/mTOR pathway in human hepatoma cells. J. Appl. Toxicol. 2015;35:485–492. doi: 10.1002/jat.3049. PubMed DOI

Akaberi M., Mehri S., Iranshahi M. Multiple pro-apoptotic targets of abietane diterpenoids from Salvia species. Fitoterapia. 2015;100:118–132. doi: 10.1016/j.fitote.2014.11.008. PubMed DOI

Hammerová J., Uldrijan S., Táborská E., Slaninová I. Benzo[c]phenanthridine alkaloids exhibit strong anti-proliferative activity in malignant melanoma cells regardless of their p53 status. J. Dermatol. Sci. 2011;62:22–35. doi: 10.1016/j.jdermsci.2011.01.006. PubMed DOI

Slanina J., Pachnikova G., Čarnecka M., Porubova Koubikova L., Adamkova L., Humpa O., Šmejkal K., Slaninova I. Identification of key structural characteristics of Schisandra chinensis lignans involved in P-glycoprotein inhibition. J. Nat. Prod. 2014;77:2255–2263. doi: 10.1021/np500521v. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace