EZH2 mutations and impact on clinical outcome: an analysis in 1,604 patients with newly diagnosed acute myeloid leukemia

. 2020 May ; 105 (5) : e228-e231. [epub] 20190814

Jazyk angličtina Země Itálie Médium print-electronic

Typ dokumentu dopisy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31413097
Odkazy

PubMed 31413097
PubMed Central PMC7193486
DOI 10.3324/haematol.2019.222323
PII: haematol.2019.222323
Knihovny.cz E-zdroje

Charité Universitätsmedizin Berlin Hämatologie und Onkologie Berlin Germany

DKMS Clinical Trials Unit Dresden Germany

HSK Wiesbaden Innere Medizin 3 Wiesbaden Germany

Klinikum Chemnitz Medizinische Klinik 3 Chemnitz Germany

Klinikum Nürnberg Nord Klinik für Innere Medizin 5 Nürnberg Germany

Masaryk University and University Hospital Department of Internal Medicine Hematology and Oncology Brno Czech Republic

Philipps Universität Marburg Klinik für Hämatologie Onkologie Immunologie Marburg Germany

Rems Murr Klinikum Winnenden Klinik für Hämatologie Onkologie und Palliativmedizin Winnenden Germany

Robert Bosch Krankenhaus Abteilung für Hämatologie Onkologie und Palliativmedizin Stuttgart Germany

St Bernward Krankenhaus Medizinische Klinik 2 Hildesheim Germany

St Marien Krankenhaus Siegen Medizinische Klinik 3 Siegen Germany

Uniklinik RWTH Aachen Klinik für Hämatologie Onkologie Hämostasiologie und Stammzelltransplantation Aachen Germany

Universitätsklinikum Carl Gustav Carus Medizinische Klinik und Poliklinik 1 Dresden Germany

Universitätsklinikum Erlangen Medizinische Klinik 5 Erlangen Germany

Universitätsklinikum Essen Klinik für Hämatologie Essen Germany

Universitätsklinikum Frankfurt Medizinische Klinik 2 Frankfurt am Main Germany

Universitätsklinikum Heidelberg Medizinische Klinik 5 Heidelberg Germany

Universitätsklinikum Jena Klinik für Innere Medizin 2 Jena Germany

Universitätsklinikum Leipzig Medizinische Klinik und Poliklinik 1 Hämatologie und Zelltherapie Leipzig Germany

Universitätsklinikum Münster Medizinische Klinik A Münster Germany

Universitätsklinikum Würzburg Medizinische Klinik und Poliklinik 2 Würzburg Germany

Zobrazit více v PubMed

Gisslinger H, Gotic M, Holowiecki J, et al. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood. 2013; 121(10):1720–1728. PubMed PMC

Gillespie E. Anagrelide: a potent and selective inhibitor of platelet cyclic AMP phosphodiesterase enzyme activity. Biochem Pharmacol. 1988;37(14):2866–2868. PubMed

Eric M. Mazur AGR, Patricia A. Sohl, Julie L. Newton, Amirthini Narendran. Analysis of the Mechanism of Anagrelide-Induced Thrombocytopenia in Humans. Blood. 1992;79(8):1931–1937. PubMed

Solberg LA, Jr, Oles KJ, Tarach JS, Petitt RM, Forstrom LA, Silverstein MN. The effects of anagrelide on human megakaryocytopoiesis. Br J Haematol. 1997;99(1):174–180. PubMed

Tomer A. Effects of anagrelide on in vivo megakaryocyte proliferation and maturation in essential thrombocythemia. Blood. 2002; 99(5):1602–1609. PubMed

Takayama N, Nishimura S, Nakamura S, et al. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. J Exp Med. 2010; 207(13):2817–2830. PubMed PMC

Nakamura S, Takayama N, Hirata S, et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell. 2014; 14(4):535–548. PubMed

Ito Y, Nakamura S, Sugimoto N, et al. Turbulence Activates Platelet Biogenesis to Enable Clinical Scale Ex Vivo Production. Cell. 2018; 174(3):636–648. PubMed

Hirata S, Murata T, Suzuki D, et al. Selective Inhibition of ADAM17 efficiently mediates glycoprotein Iba retention during ex vivo generation of human induced pluripotent stem cell-derived platelets. Stem Cells Transl Med. 2017;6(3):720–730. PubMed PMC

Butcher L, Ahluwalia M, Ord T, et al. Evidence for a role of TRIB3 in the regulation of megakaryocytopoiesis. Sci Rep. 2017;7(1):6684. PubMed PMC

Eisman R, Surrey S, Ramachandran B, Schwartz E, Poncz M. Structural and Functional Comparison of the Genes for Human Platelet Factor 4 and PF4alt. Blood. 1990;76(2):336–344. PubMed

Apostolidis PA, Lindsey S, Miller WM, Papoutsakis ET. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation. Physiol Genomics. 2012;44(12):638–650. PubMed PMC

Apostolidis PA, Woulfe DS, Chavez M, Miller WM, Papoutsakis ET. Role of tumor suppressor p53 in megakaryopoiesis and platelet function. Exp Hematol. 2012;40(2):131–142. PubMed PMC

Zou X, Qu M, Fang F, et al. Small Molecule Supplements Improve Cultured Megakaryocyte Polyploidization by Modulating Multiple Cell Cycle Regulators. Biomed Res Int. 2017;2017:2320519. PubMed PMC

Ahluwalia M, Butcher L, Donovan H, Killick-Cole C, Jones PM, Erusalimsky JD. The gene expression signature of anagrelide provides an insight into its mechanism of action and uncovers new regulators of megakaryopoiesis. J Thromb Haemost. 2015;13(6):1103–1112. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...