Strong correlation between the rates of intrinsically antibiotic-resistant species and the rates of acquired resistance in Gram-negative species causing bacteraemia, EU/EEA, 2016
Jazyk angličtina Země Švédsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
001
World Health Organization - International
PubMed
31431208
PubMed Central
PMC6702794
DOI
10.2807/1560-7917.es.2019.24.33.1800538
Knihovny.cz E-zdroje
- Klíčová slova
- Gram-negative bacilli, antibiotic resistance, antimicrobial resistance, bacterial infections, bloodstream infection,
- MeSH
- Acinetobacter účinky léků MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence účinky léků MeSH
- bakteriemie farmakoterapie epidemiologie MeSH
- cefalosporiny farmakologie MeSH
- Escherichia coli účinky léků MeSH
- Evropská unie MeSH
- fluorochinolony farmakologie MeSH
- gramnegativní bakteriální infekce farmakoterapie epidemiologie MeSH
- gramnegativní bakterie účinky léků MeSH
- karbapenemy farmakologie MeSH
- Klebsiella pneumoniae účinky léků MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- Pseudomonas aeruginosa účinky léků MeSH
- sentinelová surveillance MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
- Názvy látek
- antibakteriální látky MeSH
- cefalosporiny MeSH
- fluorochinolony MeSH
- karbapenemy MeSH
BackgroundAntibiotic resistance, either intrinsic or acquired, is a major obstacle for treating bacterial infections.AimOur objective was to compare the country-specific species distribution of the four Gram-negative species Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter species and the proportions of selected acquired resistance traits within these species.MethodWe used data reported for 2016 to the European Antimicrobial Resistance Surveillance Network (EARS-Net) by 30 countries in the European Union and European Economic Area.ResultsThe country-specific species distribution varied considerably. While E. coli accounted for 31.9% to 81.0% (median: 69.0%) of all reported isolates, the two most common intrinsically resistant species P. aeruginosa and Acinetobacter spp. combined (PSEACI) accounted for 5.5% to 39.2% of isolates (median: 10.1%). Similarly, large national differences were noted for the percentages of acquired non-susceptibility to third-generation cephalosporins, carbapenems and fluoroquinolones. There was a strong positive rank correlation between the country-specific percentages of PSEACI and the percentages of non-susceptibility to the above antibiotics in all four species (rho > 0.75 for 10 of the 11 pairs of variables tested).ConclusionCountries with the highest proportion of P. aeruginosa and Acinetobacter spp. were also those where the rates of acquired non-susceptibility in all four studied species were highest. The differences are probably related to national differences in antibiotic consumption and infection prevention and control routines.
Clinical Microbiology Central Hospital Växjö Sweden
Department of Clinical Microbiology Karolinska University Hospital Stockholm Sweden
Department of Epidemiology and Clinical Microbiology National Medicines Institute Warsaw Poland
Department of Experimental and Clinical Medicine University of Florence Italy
Department of Infectious Diseases Istituto Superiore di Sanità Rome Italy
Department of Laboratory Medicine Karolinska Institute Stockholm Sweden
Department of Microbiology and Infection Control University Hospital of North Norway Tromsø Norway
Department of Public Health Policy School of Public Health University of West Attica Athens Greece
European Centre for Disease Prevention and Control Solna Sweden
Microbiology and Virology Unit Florence Careggi University Hospital Florence Italy
National Infection Service Public Health England London United Kingdom
National Institute for Public Health and the Environment Bilthoven the Netherlands
Pan American Health Organization World Health Organization Washington DC United States
Robert Koch Institute Department for Infectious Disease Epidemiology Berlin Germany
Zobrazit více v PubMed
European Centre for Disease Prevention and Control (ECDC). Surveillance of antimicrobial resistance in Europe 2016. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2017. Available from: https://ecdc.europa.eu/sites/portal/files/documents/AMR-surveillance-Europe-2016.pdf
European Centre for Disease Prevention and Control (ECDC). Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals 2011-2012. Stockholm: ECDC; 2013. Available from: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/healthcare-associated-infections-antimicrobial-use-PPS.pdf PubMed
Falagas ME, Karveli EA, Siempos II, Vardakas KZ. Acinetobacter infections: a growing threat for critically ill patients. Epidemiol Infect. 2008;136(8):1009-19. 10.1017/S0950268807009478 PubMed DOI PMC
Jarlier V, Fosse T, Philippon A. Antibiotic susceptibility in aerobic gram-negative bacilli isolated in intensive care units in 39 French teaching hospitals (ICU study). Intensive Care Med. 1996;22(10):1057-65.10.1111/j.1469-0691.2011.03703.x PubMed DOI
Leclercq R, Cantón R, Brown DF, Giske CG, Heisig P, MacGowan AP, et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect. 2013;19(2):141-60. 10.1111/j.1469-0691.2011.03703.x PubMed DOI
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. 10.1111/j.1469-0691.2011.03570.x PubMed DOI
Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis. 2006;43(Suppl 2):S49-56. 10.1086/504477 PubMed DOI
Hancock REW, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat. 2000;3(4):247-55. 10.1054/drup.2000.0152 PubMed DOI
El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK, et al. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 2015;10(10):1683-706. 10.2217/fmb.15.48 PubMed DOI
Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect. 2006;12(9):826-36. 10.1111/j.1469-0691.2006.01456.x PubMed DOI
United Nations (UN). General Assembly of the UN. Political declaration of the high-level meeting of the General Assembly on Antimicrobial Resistance: draft resolution / submitted by the President of the General Assembly. New York: UN; 2016 Available from: https://digitallibrary.un.org/record/842813?ln=en
World Health Organization (WHO). Global action plan on antimicrobial resistance. Geneva: WHO; 2015. Available from: http://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/ PubMed
Taylor R. Interpretation of the correlation coefficient: a basic review. J Diagn Med Sonogr. 1990;6(1):35-9. 10.1177/875647939000600106 DOI
Spearman's rank-order correlation. Derby: Lærd Statistics. [Accessed: 18 August 2018]. Available from: https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
Venier AG, Leroyer C, Slekovec C, Talon D, Bertrand X, Parer S, et al. Risk factors for Pseudomonas aeruginosa acquisition in intensive care units: a prospective multicentre study. J Hosp Infect. 2014;88(2):103-8. 10.1016/j.jhin.2014.06.018 PubMed DOI
García-Garmendia JL, Ortiz-Leyba C, Garnacho-Montero J, Jiménez-Jiménez FJ, Pérez-Paredes C, Barrero-Almodóvar AE, et al. Risk factors for Acinetobacter baumannii nosocomial bacteremia in critically ill patients: a cohort study. Clin Infect Dis. 2001;33(7):939-46. 10.1086/322584 PubMed DOI
Lemos EV, de la Hoz FP, Einarson TR, McGhan WF, Quevedo E, Castañeda C, et al. Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: systematic review and meta-analysis. Clin Microbiol Infect. 2014;20(5):416-23. 10.1086/322584 PubMed DOI
Nicolas-Chanoine MH, Petitjean M, Mora A, Mayer N, Lavigne JP, Boulet O, et al. The ST131 Escherichia coli H22 subclone from human intestinal microbiota: Comparison of genomic and phenotypic traits with those of the globally successful H30 subclone. BMC Microbiol. 2017;17(1):71. 10.1186/s12866-017-0984-8 PubMed DOI PMC
Falagas ME, Kopterides P. Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: a systematic review of the literature. J Hosp Infect. 2006;64(1):7-15. 10.1016/j.jhin.2006.04.015 PubMed DOI
Voor In ’t Holt AF, Severin JA, Lesaffre EMEH, Vos MC. A systematic review and meta-analyses show that carbapenem use and medical devices are the leading risk factors for carbapenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58(5):2626-37. 10.1128/AAC.01758-13 PubMed DOI PMC
Agodi A, Barchitta M, Cipresso R, Giaquinta L, Romeo MA, Denaro C. Pseudomonas aeruginosa carriage, colonization, and infection in ICU patients. Intensive Care Med. 2007;33(7):1155-61. 10.1007/s00134-007-0671-6 PubMed DOI
Doan TN, Kong DC, Marshall C, Kirkpatrick CM, McBryde ES. Characterising the transmission dynamics of Acinetobacter baumannii in intensive care units using hidden Markov models. PLoS One. 2015;10(7):e0132037. 10.1371/journal.pone.0132037 PubMed DOI PMC
Stapleton PJM, Murphy M, McCallion N, Brennan M, Cunney R, Drew RJ. Outbreaks of extended spectrum beta-lactamase-producing Enterobacteriaceae in neonatal intensive care units: a systematic review. Arch Dis Child Fetal Neonatal Ed. 2016;101(1):F72-8. 10.1136/archdischild-2015-308707 PubMed DOI
Hendrik TC, Voor In ’t Holt AF, Vos MC. Clinical and molecular epidemiology of extended-spectrum beta-lactamase-producing Klebsiella spp.: a systematic review and meta-analyses. PLoS One. 2015;10(10):e0140754. 10.1371/journal.pone.0140754 PubMed DOI PMC
European Centre for Disease Prevention and Control (ECDC). Summary of the latest data on antibiotic consumption in the European Union. ESAC-Net surveillance data, November 2017. Stockholm: ECDC; 2017. Available from: https://ecdc.europa.eu/sites/portal/files/documents/Final_2017_EAAD_ESAC-Net_Summary-edited%20-%20FINALwith%20erratum.pdf
European Centre for Disease Prevention and Control (ECDC), European Food Safety Authority and European Medicines Agency (EFSA), European Medicines Agency (EMA). ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals – Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report. EFSA Journal 2017;15(7):4872. 10.2903/j.efsa.2017.4872 Available from: https://ecdc.europa.eu/sites/portal/files/documents/efs2_4872_final.pdf PubMed DOI PMC
Fluit AC, Jones ME, Schmitz FJ, Acar J, Gupta R, Verhoef J. Antimicrobial susceptibility and frequency of occurrence of clinical blood isolates in Europe from the SENTRY antimicrobial surveillance program, 1997 and 1998. Clin Infect Dis. 2000;30(3):454-60. 10.1086/313710 PubMed DOI
Allegranzi B, Bagheri Nejad S, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228-41. 10.1016/S0140-6736(10)61458-4 PubMed DOI
European Centre for Disease Prevention and Control (ECDC). Surveillance of antimicrobial resistance in Europe 2017. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2018. Available from: https://ecdc.europa.eu/sites/portal/files/documents/EARS-Net-report-2017-update-jan-2019.pdf