Physical nature of silane⋯carbene dimers revealed by state-of-the-art ab initio calculations
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
Grant support
2015/17/B/ST4/04050
Narodowe Centrum Nauki
LM2015042
Projects of Large Research, Development and Innovations Infrastructures
LM2015085
Projects of Large Research, Development and Innovations Infrastructures
PubMed
31441520
DOI
10.1002/jcc.26043
Knihovny.cz E-resources
- Keywords
- CCSD(T), SAPT, carbene, dispersion, silane,
- Publication type
- Journal Article MeSH
Using the SAPT2 + 3(CCD)δMP2 method in complete basis set (CBS) limit, it is shown that the interactions in the recently studied silane⋯carbene dimers are mainly dispersive in nature. Consequently, slow convergence of dispersion energy also forces slow convergence of the interaction energy. Therefore, obtaining very accurate values requires extrapolation of the correlation part to the CBS limit. The most accurate values obtained at the CCSD(T)/CBS level of theory show that the studied silane⋯carbene dimers are rather weakly bound, with interaction energies ranging from about -1.9 to -1.3 kcal/mol. Comparing to CCSD(T)/CBS, it will be shown that SCS-MP2 and MP2C methods clearly underestimate and methods based on SAPT2+ and having some third-order corrections, as well as the MP2 method, overestimate values of interaction energies. Popular SAPT(DFT) method performs better than SCS-MP2 and MP2C; nevertheless, underestimation is still considerable. The underestimation is slightly quenched if third-order dispersion energy and its exchange counterpart is added to the SAPT(DFT). The closest value of CCSD(T)/CBS has been given by the SAPT2 + (3)(CCD)δMP2 method in quadruple-ζ basis set. © 2019 Wiley Periodicals, Inc.
See more in PubMed
M. Jabłoński, Chem. Phys. Lett. 2018, 710, 78.
M. Jabłoński, J. Phys. Org. Chem. 2019, 32, e3949.
A. J. Hubert, In Catalysis in C1 Chemistry; W. Keim, Ed., Springer, Dordrecht, 1983.
R. A. Moss, M. S. Platz, M. Jones, Jr., Reactive Intermediate Chemistry, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.
M. Jabłoński, Chem. Phys. Lett. 2009, 477, 374.
M. Jabłoński, Comput. Theor. Chem. 2012, 998, 39.
M. Jabłoński, W. A. Sokalski, Chem. Phys. Lett. 2012, 552, 156.
M. Jabłoński, Chem. Phys. 2014, 433, 76.
M. Jabłoński, Comput. Theor. Chem. 2016, 1096, 54.
S. Yourdkhani, M. Jabłoński, J. Comput. Chem. 2017, 38, 773.
M. Jabłoński, J. Comput. Chem. 2018, 39, 1177.
P. Politzer, J. S. Murray, T. Clark, Phys. Chem. Chem. Phys. 2010, 12, 7748.
J. S. Murray, P. Lane, T. Clark, K. E. Riley, P. Politzer, J. Mol. Model. 2012, 18, 541.
B. Jeziorski, R. Moszynski, K. Szalewicz, Chem. Rev. 1994, 94, 1887.
F. Jensen, Introduction to Computational Chemistry, 2nd ed., Chichester: John Wiley & Sons, 2013.
P. Jurečka, J. Šponer, J. Černý, P. Hobza, Phys. Chem. Chem. Phys. 2006, 8, 1985.
A. J. Bordner, Chem. Phys. Chem. 2012, 13, 3981.
J. Řezáč, P. Hobza, J. Chem. Theory Comput. 2013, 9, 2151.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Gaussian, Inc, Wallingford, CT, 2010.
E. G. Hohenstein, C. D. Sherrill, WIREs Comput. Mol. Sci. 2012, 2, 304.
T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, C. D. Sherrill, J. Chem. Phys. 2014, 140, 094106.
A. J. Misquitta, K. Szalewicz, Chem. Phys. Lett. 2002, 357, 301.
A. Heßelmann, G. Jansen, Chem. Phys. Lett. 2002, 357, 464.
A. Heßelmann, G. Jansen, Chem. Phys. Lett. 2002, 362, 319.
A. Heßelmann, G. Jansen, Chem. Phys. Lett. 2003, 367, 778.
A. J. Misquitta, B. Jeziorski, K. Szalewicz, Phys. Rev. Lett. 2003, 91, 033201.
A. Heßelmann, G. Jansen, M. Schütz, J. Chem. Phys. 2005, 122, 014103.
A. J. Misquitta, R. Podeszwa, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 2005, 123, 214103.
R. Podeszwa, R. Bukowski, K. Szalewicz, J. Chem. Theory Comput. 2006, 2, 400.
A. Hesselmann, T. Korona, Phys. Chem. Chem. Phys. 2011, 13, 732.
R. Moszynski, B. Jeziorski, A. Ratkiewicz, S. Rybak, J. Chem. Phys. 1993, 99, 8856.
R. Moszynski, S. M. Cybulski, G. Chałasiński, J. Chem. Phys. 1994, 100, 4998.
M. Jeziorska, B. Jeziorski, J. Čížek, Int. J. Quant. Chem. 1987, 32, 149.
R. Moszynski, T. G. A. Heijmen, B. Jeziorski, Mol. Phys. 1996, 88, 741.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
M. Grüning, O. V. Gritsenko, S. J. A. van Gisbergen, E. J. Baerends, J. Chem. Phys. 2001, 114, 652.
A. Heßelmann, T. Korona, J. Chem. Phys. 2014, 141, 094107.
B. Jeziorski, R. Moszynski, A. Ratkiewicz, S. Rybak, K. Szalewicz, H. L. Williams, In Methods and Techniques in Computational Chemistry: METECC-94; E. Clementi, Ed., STEF, Cagliari, Italy, 1993; Chapter 3, p. 79.
G. Jansen, WIREs Comput. Mol. Sci. 2014, 4, 127.
A. Heßelmann, J. Chem. Theory Comput. 2018, 14, 1943.
T. H. Dunning, Jr., J. Chem. Phys. 1989, 90, 1007.
D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys. 1993, 98, 1358.
A. K. Wilson, D. E. Woon, K. A. Peterson, T. H. Dunning, Jr., J. Chem. Phys. 1999, 110, 7667.
K. A. Peterson, T. H. Dunning, Jr., J. Chem. Phys. 2002, 117, 10548.
R. A. Kendall, H. A. Früchtl, Theor. Chem. Acc. 1997, 97, 158.
F. Weigend, Phys. Chem. Chem. Phys. 2002, 4, 4285.
F. Weigend, A. Kohn, C. Hättig, J. Chem. Phys. 2002, 116, 3175.
C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618.
M. Head-Gordon, J. A. Pople, M. J. Frisch, Chem. Phys. Lett. 1988, 153, 503.
S. Grimme, J. Chem. Phys. 2003, 118, 9095.
A. Szabados, J. Chem. Phys. 2006, 125, 214105.
R. F. Fink, J. Chem. Phys. 2010, 133, 174113.
A. Heßelmann, J. Chem. Phys. 2008, 128, 144112.
M. Pitoňák, A. Heßelmann, J. Chem. Theory Comput. 2010, 6, 168.
J. Čižek, J. Chem. Phys. 1966, 45, 4256.
K. Raghavachari, G. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479.
A. Heßelmann, A. W. Götz, F. Della Sala, A. Görling, J. Chem. Phys. 2007, 127, 054102.
S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
S. Yourdkhani, T. Korona, N. L. Hadipour, J. Phys. Chem. A 2015, 119, 6446.
H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, MOLPRO, Version 2012.1, A Package of Ab Initio Programs, 2012.
H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, WIREs Comput. Mol. Sci. 2012, 2, 242.
R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince, III., E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di Remigio, R. M. Richard, J. F. Gonthier, A. M. James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard, P. Verma, H. F. Schaefer, III., K. Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M. Turney, T. D. Crawford, C. D. Sherrill, J. Chem. Theory Comput. 2017, 13, 3185.
A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, A. K. Wilson, Chem. Phys. Lett. 1998, 286, 243.
G. Chałasiński, M. M. Szczȩśniak, Mol. Phys. 1988, 63, 205.
P. Hobza, H. L. Selzle, H. W. Schlag, J. Phys. Chem. 1996, 100, 18790.
T. Korona, A. Heßelmann, H. Dodziuk, J. Chem. Theory Comput. 2009, 5, 1585.
R. M. Parrish, E. G. Hohenstein, D. C. Sherrill, J. Chem. Phys. 2013, 139, 174102.
T. Korona, Phys. Chem. Chem. Phys. 2007, 9, 6004.
T. Korona, Mol. Phys. 2013, 111, 3705.
R. Schäffer, G. Jansen, Theor. Chem. Acc. 2012, 131, 1235.
R. Schäffer, G. Jansen, Mol. Phys. 2013, 111, 2570.
S. Yourdkhani, T. Korona, N. L. Hadipour, J. Comput. Chem. 2015, 36, 2412.
A. Hesselmann, G. Jansen, M. Schütz, J. Am. Chem. Soc. 2006, 128, 11730.
A. J. Stone, J. Am. Chem. Soc. 2013, 135, 7005.
Y. Xiong, S. Yao, M. Driess, Chem. Asian J. 2010, 5, 322.
Y. Xiong, S. Yao, M. Driess, CCDC 739318: Experimental Crystal Structure Determination, 2010, DOI: https://doi.org/10.5517/ccst9zv