Cryptic diversity of a widespread global pathogen reveals expanded threats to amphibian conservation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
P30 GM103324
NIGMS NIH HHS - United States
PubMed
31548391
PubMed Central
PMC6789904
DOI
10.1073/pnas.1908289116
PII: 1908289116
Knihovny.cz E-zdroje
- Klíčová slova
- Batrachochytrium dendrobatidis, amphibian, conservation, genetic monitoring,
- MeSH
- celosvětové zdraví MeSH
- Chytridiomycota * genetika MeSH
- mykózy epidemiologie mikrobiologie veterinární MeSH
- obojživelníci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Biodiversity loss is one major outcome of human-mediated ecosystem disturbance. One way that humans have triggered wildlife declines is by transporting disease-causing agents to remote areas of the world. Amphibians have been hit particularly hard by disease due in part to a globally distributed pathogenic chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Prior research has revealed important insights into the biology and distribution of Bd; however, there are still many outstanding questions in this system. Although we know that there are multiple divergent lineages of Bd that differ in pathogenicity, we know little about how these lineages are distributed around the world and where lineages may be coming into contact. Here, we implement a custom genotyping method for a global set of Bd samples. This method is optimized to amplify and sequence degraded DNA from noninvasive skin swab samples. We describe a divergent lineage of Bd, which we call BdASIA3, that appears to be widespread in Southeast Asia. This lineage co-occurs with the global panzootic lineage (BdGPL) in multiple localities. Additionally, we shed light on the global distribution of BdGPL and highlight the expanded range of another lineage, BdCAPE. Finally, we argue that more monitoring needs to take place where Bd lineages are coming into contact and where we know little about Bd lineage diversity. Monitoring need not use expensive or difficult field techniques but can use archived swab samples to further explore the history-and predict the future impacts-of this devastating pathogen.
College of Forestry Southwest Forestry University Kunming 650224 Yunnan China
Department of Biological Sciences Florida International University Miami FL 33199
Department of Biological Sciences University of Pittsburgh Pittsburgh PA 15260
Department of Biology San Francisco State University San Francisco CA 94132
Department of Biology University of Massachusetts Boston Boston MA 02125
Department of Biology University of Nevada Reno NV 89557
Department of Ecology and Evolution University of Arizona Tucson AZ 85721
Department of Ecology and Evolution University of Kansas Lawrence KS 66045
Department of Ecology Evolution and Marine Biology University of California Santa Barbara CA 93106
Department of Environmental Science Policy and Management University of California Berkeley CA 94720
Department of Evolution and Ecology University of California Davis CA 95616
Department of Herpetology California Academy of Sciences San Francisco CA 94118
Department of Oceanography University of Hawai'i at Manoa Honolulu HI 96822
Department of Pathology Bacteriology and Avian Diseases Ghent University 9820 Merelbeke Belgium
Environmental Sciences Graduate Program Oregon State University Corvallis OR 97331
Florida Museum of Natural History University of Florida Gainesville FL 32601
Institute of Parasitology Czech Academy of Sciences 370 05 Ceske Budejovice Czech Republic
Museum of Vertebrate Zoology University of California Berkeley CA 94720
One Health Research Group The University of Melbourne Werribee VIC 3030 Australia
Reptile Amphibian and Fish Conservation 6525 ED Nijmegen The Netherlands
School of Environment and Sciences Griffith University Gold Coast QLD 4215 Australia
School of Life Sciences University of Nevada Las Vegas NV 89154
Sierra Nevada Aquatic Research Laboratory University of California Mammoth Lakes CA 93546
University of Kansas Biodiversity Institute University of Kansas Lawrence KS 66045
Vietnam National Museum of Nature Vietnam Academy of Science and Technology Hanoi Vietnam
Zobrazit více v PubMed
Jones K. E., et al. , Global trends in emerging infectious diseases. Nature 451, 990–993 (2008). PubMed PMC
Daszak P., Cunningham A. A., Hyatt A. D., Emerging infectious diseases of wildlife–Threats to biodiversity and human health. Science 287, 443–449 (2000). PubMed
Fisher M. C., Garner T. W. J., The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal Biol. Rev. 21, 2–9 (2007).
Foley J., Clifford D., Castle K., Cryan P., Ostfeld R. S., Investigating and managing the rapid emergence of white-nose syndrome, a novel, fatal, infectious disease of hibernating bats. Conserv. Biol. 25, 223–231 (2011). PubMed
Skerratt L. F., et al. , Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4, 125–134 (2007).
Wake D. B., Vredenburg V. T., Colloquium paper: Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. U.S.A. 105 (suppl. 1), 11466–11473 (2008). PubMed PMC
Longcore J. E., Pessier A. P., Nichols D. K., Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to Amphibians. Mycologia 91, 219–227 (1999).
Voyles J., et al. , Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326, 582–585 (2009). PubMed
Vredenburg V. T., Knapp R. A., Tunstall T. S., Briggs C. J., Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc. Natl. Acad. Sci. U.S.A. 107, 9689–9694 (2010). PubMed PMC
Briggs C. J., Knapp R. A., Vredenburg V. T., Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc. Natl. Acad. Sci. U.S.A. 107, 9695–9700 (2010). PubMed PMC
Reeder N. M. M., Pessier A. P., Vredenburg V. T., A reservoir species for the emerging amphibian pathogen Batrachochytrium dendrobatidis thrives in a landscape decimated by disease. PLoS One 7, e33567 (2012). PubMed PMC
Yap T. A., Koo M. S., Ambrose R. F., Vredenburg V. T., Introduced bullfrog facilitates pathogen invasion in the western United States. PLoS One 13, e0188384 (2018). PubMed PMC
Schloegel L. M., et al. , The North American bullfrog as a reservoir for the spread of Batrachochytrium dendrobatidis in Brazil. Anim. Conserv. 13, 53–61 (2010).
O’Hanlon S. J., et al. , Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018). PubMed PMC
Rosenblum E. B., et al. , Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proc. Natl. Acad. Sci. U.S.A. 110, 9385–9390 (2013). PubMed PMC
Jenkinson T. S., et al. , Amphibian-killing chytrid in Brazil comprises both locally endemic and globally expanding populations. Mol. Ecol. 25, 2978–2996 (2016). PubMed
Farrer R. A., et al. , Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc. Natl. Acad. Sci. U.S.A. 108, 18732–18736 (2011). PubMed PMC
Schloegel L. M., et al. , Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol. Ecol. 21, 5162–5177 (2012). PubMed
Greenspan S. E., et al. , Hybrids of amphibian chytrid show high virulence in native hosts. Sci. Rep. 8, 9600 (2018). PubMed PMC
Boyle D. G., Boyle D. B., Olsen V., Morgan J. A., Hyatt A. D., Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Organ. 60, 141–148 (2004). PubMed
Byrne A. Q., et al. , Unlocking the story in the swab: A new genotyping assay for the amphibian chytrid fungus Batrachochytrium dendrobatidis. Mol. Ecol. Resour. 17, 1283–1292 (2017). PubMed
Bletz M. C., et al. , Widespread presence of the pathogenic fungus Batrachochytrium dendrobatidis in wild amphibian communities in Madagascar. Sci. Rep. 5, 8633 (2015). PubMed PMC
Grenfell B. T., et al. , Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332 (2004). PubMed
Miller C. A., et al. , Distribution modeling and lineage diversity of the chytrid fungus Batrachochytrium dendrobatidis (Bd) in a central African amphibian hotspot. PLoS One 13, e0199288 (2018). PubMed PMC
Soto‐Azat C., Clarke B. T., Poynton J. C., Cunningham A. A., Widespread historical presence of Batrachochytrium dendrobatidis in African pipid frogs. Divers. Distrib. 16, 126–131 (2010).
Kolby J. E., Padgett-Flohr G. E., Field R., Amphibian chytrid fungus Batrachochytrium dendrobatidis in Cusuco National Park, Honduras. Dis. Aquat. Organ. 92, 245–251 (2010). PubMed
Voyles J., et al. , Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science 359, 1517–1519 (2018). PubMed
Knapp R. A., et al. , Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. Proc. Natl. Acad. Sci. U.S.A. 113, 11889–11894 (2016). PubMed PMC
Swei A., et al. , Is chytridiomycosis an emerging infectious disease in Asia? PLoS One 6, e23179 (2011). PubMed PMC
Schloegel L. M., et al. , Magnitude of the US trade in amphibians and presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs (Rana catesbeiana). Biol. Conserv. 142, 1420–1426 (2009).
Mutnale M. C., et al. , Enzootic frog pathogen Batrachochytrium dendrobatidis in Asian tropics reveals high ITS haplotype diversity and low prevalence. Sci. Rep. 8, 10125 (2018). PubMed PMC
Cheng T. L., Rovito S. M., Wake D. B., Vredenburg V. T., Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. Proc. Natl. Acad. Sci. U.S.A. 108, 9502–9507 (2011). PubMed PMC
Rodriguez D., Becker C. G., Pupin N. C., Haddad C. F. B., Zamudio K. R., Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol. Ecol. 23, 774–787 (2014). PubMed
Burrowes P. A., De la Riva I., Unraveling the historical prevalence of the invasive chytrid fungus in the Bolivian Andes: Implications in recent amphibian declines. Biol. Invasions 19, 1781–1794 (2017).
Stamatakis A., RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014). PubMed PMC
Zhang C., Rabiee M., Sayyari E., Mirarab S., ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19 (suppl. 6), 153 (2018). PubMed PMC