Differences in Expression of Genes Involved in Bone Development and Morphogenesis in the Walls of Internal Thoracic Artery and Saphenous Vein Conduits May Provide Markers Useful for Evaluation Graft Patency
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31581653
PubMed Central
PMC6801533
DOI
10.3390/ijms20194890
PII: ijms20194890
Knihovny.cz E-zdroje
- Klíčová slova
- coronary artery bypass grafting, internal thoracic artery, osteogenesis, saphenous vein,
- MeSH
- aorta thoracica metabolismus MeSH
- biologické markery MeSH
- genové regulační sítě MeSH
- koronární bypass * MeSH
- lidé MeSH
- morfogeneze genetika MeSH
- stanovení celkové genové exprese MeSH
- vena saphena metabolismus MeSH
- výpočetní biologie metody MeSH
- vývoj kostí genetika MeSH
- vývojová regulace genové exprese * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
Coronary artery bypass grafting (CABG) is one of the most efficient procedures for patients with advanced coronary artery disease. From all the blood vessels with the potential to be used in this procedure, the internal thoracic artery (ITA) and the saphenous vein (SV) are the most commonly applied as aortocoronary conduits. Nevertheless, in order to evaluate the graft patency and efficiency effectively, basic knowledge should be constantly expanding at the molecular level as well, as the understanding of predictive factors is still limited. In this study, we have employed the expressive microarray approach, validated with Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), to analyze the transcriptome of both venous and arterial grafts. Searching for potential molecular factors, we analyzed differentially expressed gene ontologies involved in bone development and morphogenesis, for the possibility of discovery of new markers for the evaluation of ITA and SV segment quality. Among three ontological groups of interest-"endochondral bone morphogenesis", "ossification", and "skeletal system development"-we found six genes common to all of them. BMP6, SHOX2, COL13A1, CSGALNACT1, RUNX2, and STC1 showed differential expression patterns in both analyzed vessels. STC1 and COL13A1 were upregulated in ITA samples, whereas others were upregulated in SV. With regard to the Runx2 protein function in osteogenic phenotype regulation, the RUNX2 gene seems to be of paramount importance in assessing the potential of ITA, SV, and other vessels used in the CABG procedure. Overall, the presented study provided valuable insight into the molecular background of conduit characterization, and thus indicated genes that may be the target of subsequent studies, also at the protein level. Moreover, it has been suggested that RUNX2 may be recognized as a molecular marker of osteogenic changes in human blood vessels.
Department of Anatomy Poznan University of Medical Sciences 60 781 Poznań Poland
Department of Histology and Embryology Poznan University of Medical Sciences 60 781 Poznań Poland
Division of Anatomy and Histology University of Zielona Góra 65 046 Zielona Góra Poland
Zobrazit více v PubMed
Davierwala P.M., Mohr F.W. Bilateral internal mammary artery grafting: Rationale and evidence. Int. J. Surg. 2015;16:133–139. doi: 10.1016/j.ijsu.2015.01.012. PubMed DOI
Kappetein A.P., van Mieghem N.M., Head S.J. Revascularization Options: Coronary artery bypass surgery and percutaneous coronary intervention. Cardiol. Clin. 2014;32:457–461. doi: 10.1016/j.ccl.2014.04.011. PubMed DOI
Al-Sabti H.A., Al Kindi A., Al-Rasadi K., Banerjee Y., Al-Hashmi K., Al-Hinai A. Saphenous vein graft vs. radial artery graft searching for the best second coronary artery bypass graft. J. Saudi Hear. Assoc. 2013;25:247–254. doi: 10.1016/j.jsha.2013.06.001. PubMed DOI PMC
Gansera B., Schmidtler F., Angelis I., Kiask T., Kemkes B., Botzenhardt F. Patency of Internal Thoracic Artery Compared to Vein Grafts - Postoperative Angiographic Findings in 1189 Symptomatic Patients in 12 Years. Thorac. Cardiovasc. Surg. 2007;55:412–417. doi: 10.1055/s-2007-965372. PubMed DOI
Taggart D.P., Altman D.G., Gray A.M., Lees B., Gerry S., Benedetto U., Flather M., ART Investigators Randomized Trial of Bilateral versus Single Internal-Thoracic-Artery Grafts. N. Engl. J. Med. 2016;375:2540–2549. doi: 10.1056/NEJMoa1610021. PubMed DOI
Taggart D.P., D’Amico R., Altman D.G. Effect of arterial revascularisation on survival: A systematic review of studies comparing bilateral and single internal mammary arteries. Lancet. 2001;358:870–875. doi: 10.1016/S0140-6736(01)06069-X. PubMed DOI
Weintraub W.S., Jones E.L., Craver J.M., Guyton R.A. Frequency of repeat coronary bypass or coronary angioplasty after coronary artery bypass surgery using saphenous venous grafts. Am. J. Cardiol. 1994;73:103–112. doi: 10.1016/0002-9149(94)90198-8. PubMed DOI
Harskamp R.E., Lopes R.D., Baisden C.E., de Winter R.J., Alexander J.H. Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery. Ann. Surg. 2013;257:824–833. doi: 10.1097/SLA.0b013e318288c38d. PubMed DOI
Dar M.I., Dar A.H., Bilal M., Ahmad M., Haseeb A. Association of Internal Mammary Artery Flow with Different Comorbidities and Post-Coronary Artery Bypass Graft Complications. Cureus. 2017;9:e1584. doi: 10.7759/cureus.1584. PubMed DOI PMC
Hegazy Y., Hassanein W., Ennker J., Keshk N., Bauer S., Sodian R. The Use of Bilateral Internal Mammary Artery Grafting in Different Degrees of Obesity. Thorac. Cardiovasc. Surg. 2017;65:278–285. doi: 10.1055/s-0037-1598028. PubMed DOI
Farkouh M.E., Domanski M., Fuster V. Comparison of CABG versus PCI Outcomes in Diabetic, Mutivessel Coronary Artery Disease Patients With and Without Acute Coronary Syndromes. Circulation. 2014;130:A20356.
Parolari A., Poggio P., Myasoedova V., Songia P., Bonalumi G., Pilozzi A., Pacini D., Alamanni F., Tremoli E. Biomarkers in Coronary Artery Bypass Surgery: Ready for Prime Time and Outcome Prediction? Front. Cardiovasc. Med. 2015;2:39. doi: 10.3389/fcvm.2015.00039. PubMed DOI PMC
Tomizawa Y., Endo M., Nishida H., Niinami H., Tanaka S., Tomioka H., Ozawa H., Kikuchi C., Koyanagi H. Use of arterial grafts for coronary revascularization. Experience of 2987 anastomoses. Jpn. J. Thorac. Cardiovasc. Surg. 1999;47:325–329. doi: 10.1007/BF03218019. PubMed DOI
Malinska A., Perek B., Buczkowski P., Kowalska K., Ostalska-Nowicka D., Witkiewicz W., Nowicki M. CD68 expression in aortocoronary saphenous vein bypass grafts. Histochem. Cell Biol. 2013;140:183–188. doi: 10.1007/s00418-012-1069-2. PubMed DOI
Perek B., Malińska A., Ostalska-Nowicka D., Puślecki M., Ligowski M., Misterski M., Zabel M., Jemielity M., Nowicki M. Cytokeratin 8 in venous grafts: A factor of unfavorable long-term prognosis in coronary artery bypass grafting patients. Cardiol. J. 2013;20:583–591. doi: 10.5603/CJ.2013.0142. PubMed DOI
Perek B., Kowalska K., Kempisty B., Nowicki A., Jankowski M., Nawrocki M.J., Malińska A. Role of macrophages in the pathogenesis of atherosclerosis and aortocoronary graft disease. J. Biol. Regul. Homeost. Agents. 2018;32:1055–1059. PubMed
Ozkan S., Akay T.H., Gultekin B., Aslim E., Arslan A., Ozdemir B.H., Becit N., Tasdelen A. Atherosclerosis of Radial and Internal Thoracic Arteries Used in Coronary Bypass: Atherosclerosis in Arterial Grafts. J. Card. Surg. 2007;22:385–389. doi: 10.1111/j.1540-8191.2007.00431.x. PubMed DOI
Yanagawa B., Algarni K.D., Yau T.M., Rao V., Brister S.J. Improving results for coronary artery bypass graft surgery in the elderly. Eur. J. Cardio-Thoracic. Surg. 2012;42:507–512. doi: 10.1093/ejcts/ezr300. PubMed DOI
ElBardissi A.W., Aranki S.F., Sheng S., O’Brien S.M., Greenberg C.C., Gammie J.S. Trends in isolated coronary artery bypass grafting: An analysis of the Society of Thoracic Surgeons adult cardiac surgery database. J. Thorac. Cardiovasc. Surg. 2012;143:273–281. doi: 10.1016/j.jtcvs.2011.10.029. PubMed DOI
Biglioli P., Cannata A., Alamanni F., Naliato M., Porqueddu M., Zanobini M., Tremoli E., Parolari A. Biological effects of off-pump vs. on-pump coronary artery surgery: Focus on inflammation, hemostasis and oxidative stress. Eur. J. Cardiothorac. Surg. 2003;24:260–269. doi: 10.1016/S1010-7940(03)00295-1. PubMed DOI
Sanders J., Hawe E., Brull D.J., Hubbart C., Lowe G.D.O., Rumley A., Humphries S.E., Montgomery H.E. Higher IL-6 levels but not IL6 −174G > C or −572G > C genotype are associated with post-operative complication following coronary artery bypass graft (CABG) surgery. Atherosclerosis. 2009;204:196–201. doi: 10.1016/j.atherosclerosis.2008.08.032. PubMed DOI
Lobato R.L., White W.D., Mathew J.P., Newman M.F., Smith P.K., McCants C.B., Alexander J.H., Podgoreanu M.V. Duke Perioperative Genetics and Safety Outcomes (PEGASUS) Investigative Team Thrombomodulin Gene Variants Are Associated With Increased Mortality After Coronary Artery Bypass Surgery in Replicated Analyses. Circulation. 2011;124:S143–S148. doi: 10.1161/CIRCULATIONAHA.110.008334. PubMed DOI PMC
Zhu Y., Hojo Y., Ikeda U., Takahashi M., Shimada K. Interaction between monocytes and vascular smooth muscle cells enhances matrix metalloproteinase-1 production. J. Cardiovasc. Pharmacol. 2000;36:152–161. doi: 10.1097/00005344-200008000-00003. PubMed DOI
Ascione R., Lloyd C.T., Underwood M.J., Lotto A.A., Pitsis A.A., Angelini G.D. Inflammatory response after coronary revascularization with or without cardiopulmonary bypass. Ann. Thorac. Surg. 2000;69:1198–1204. doi: 10.1016/S0003-4975(00)01152-8. PubMed DOI
Espinoza-Lewis R.A., Yu L., He F., Liu H., Tang R., Shi J., Sun X., Martin J.F., Wang D., Yang J., et al. Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev. Biol. 2009;327:376–385. doi: 10.1016/j.ydbio.2008.12.028. PubMed DOI PMC
Ye W., Song Y., Huang Z., Zhang Y., Chen Y. Genetic Regulation of Sinoatrial Node Development and Pacemaker Program in the Venous Pole. J. Cardiovasc. Dev. Dis. 2015;2:282–298. doi: 10.3390/jcdd2040282. PubMed DOI PMC
Liang X., Evans S.M., Sun Y. Development of the cardiac pacemaker. Cell. Mol. Life Sci. 2017;74:1247. doi: 10.1007/s00018-016-2400-1. PubMed DOI PMC
Ye W., Wang J., Song Y., Yu D., Sun C., Liu C., Chen F., Zhang Y., Wang F., Harvey R.P., et al. A common Shox2-Nkx2-5 antagonistic mechanism primes the pacemaker cell fate in the pulmonary vein myocardium and sinoatrial node. Development. 2015;142:2521–2532. doi: 10.1242/dev.120220. PubMed DOI PMC
Hoffmann S., Clauss S., Berger I.M., Weiß B., Montalbano A., Röth R., Bucher M., Klier I., Wakili R., Seitz H., et al. Coding and non-coding variants in the SHOX2 gene in patients with early-onset atrial fibrillation. Basic Res. Cardiol. 2016;111:36. doi: 10.1007/s00395-016-0557-2. PubMed DOI PMC
Soshnikova N. Hox genes regulation in vertebrates. Dev. Dyn. 2014;243:49–58. doi: 10.1002/dvdy.24014. PubMed DOI
Pruett N.D., Visconti R.P., Jacobs D.F., Scholz D., McQuinn T., Sundberg J.P., Awgulewitsch A. Evidence for Hox-specified positional identities in adult vasculature. BMC Dev. Biol. 2008;8:93. doi: 10.1186/1471-213X-8-93. PubMed DOI PMC
Pruett N.D., Hajdu Z., Zhang J., Visconti R.P., Kern M.J., Wellik D.M., Majesky M.W., Awgulewitsch A. Changing topographic Hox expression in blood vessels results in regionally distinct vessel wall remodeling. Biol. Open. 2012;1:430–435. doi: 10.1242/bio.2012039. PubMed DOI PMC
Komori T. Advances in Experimental Medicine and Biology. Volume 962. Springer; Singapore: 2017. Roles of Runx2 in Skeletal Development; pp. 83–93. PubMed
Kendrick J., Chonchol M. The Role of Phosphorus in the Development and Progression of Vascular Calcification. Am. J. Kidney Dis. 2011;58:826–834. doi: 10.1053/j.ajkd.2011.07.020. PubMed DOI PMC
Román-García P., Carrillo-López N., Fernández-Martín J.L., Naves-Díaz M., Ruiz-Torres M.P., Cannata-Andía J.B. High phosphorus diet induces vascular calcification, a related decrease in bone mass and changes in the aortic gene expression. Bone. 2010;46:121–128. doi: 10.1016/j.bone.2009.09.006. PubMed DOI
Martínez-Moreno J.M., Muñoz-Castañeda J.R., Herencia C., de Oca A.M., Estepa J.C., Canalejo R., Rodríguez-Ortiz M.E., Perez-Martinez P., Aguilera-Tejero E., Canalejo A., et al. In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/β-catenin activation. Am. J. Physiol. Physiol. 2012;303:F1136–F1144. doi: 10.1152/ajprenal.00684.2011. PubMed DOI
Lin M.-E., Chen T., Leaf E.M., Speer M.Y., Giachelli C.M. Runx2 Expression in Smooth Muscle Cells Is Required for Arterial Medial Calcification in Mice. Am. J. Pathol. 2015;185:1958. doi: 10.1016/j.ajpath.2015.03.020. PubMed DOI PMC
Cai T., Sun D., Duan Y., Wen P., Dai C., Yang J., He W. WNT/β-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expression. Exp. Cell Res. 2016 doi: 10.1016/j.yexcr.2016.06.007. PubMed DOI
Langenfeld E.M., Langenfeld J. Bone morphogenetic protein-2 stimulates angiogenesis in developing tumors. Mol. Cancer Res. 2004;2:141–149. PubMed
Wiley D.M., Kim J.-D., Hao J., Hong C.C., Bautch V.L., Jin S.-W. Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat. Cell Biol. 2011;13:686–692. doi: 10.1038/ncb2232. PubMed DOI PMC
Mouillesseaux K.P., Wiley D.S., Saunders L.M., Wylie L.A., Kushner E.J., Chong D.C., Citrin K.M., Barber A.T., Park Y., Kim J.-D., et al. Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6. Nat. Commun. 2016;7:13247. doi: 10.1038/ncomms13247. PubMed DOI PMC
Uemura M.T., Ihara M., Maki T., Nakagomi T., Kaji S., Uemura K., Matsuyama T., Kalaria R.N., Kinoshita A., Takahashi R. Pericyte-derived bone morphogenetic protein 4 underlies white matter damage after chronic hypoperfusion. Brain Pathol. 2018;28:521–535. doi: 10.1111/bpa.12523. PubMed DOI PMC
Chatterjee T.K., Aronow B.J., Tong W.S., Manka D., Tang Y., Bogdanov V.Y., Unruh D., Blomkalns A.L., Piegore M.G., Weintraub D.S., et al. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis. Physiol. Genom. 2013;45:697–709. doi: 10.1152/physiolgenomics.00042.2013. PubMed DOI PMC
Liu N.M., Yokota T., Maekawa S., Lü P., Zheng Y.-W., Tei I., Taniguchi H., Yokoyama U., Kato T., Minamisawa S. Transcription profiles of endothelial cells in the rat ductus arteriosus during a perinatal period. PLoS ONE. 2013;8:e73685. doi: 10.1371/journal.pone.0073685. PubMed DOI PMC
Deol H.K., Varghese R., Wagner G.F., DiMattia G.E. Dynamic regulation of mouse ovarian stanniocalcin expression during gestation and lactation. Endocrinology. 2000;141:3412–3421. doi: 10.1210/endo.141.9.7658. PubMed DOI
Yeung B.H.Y., Law A.Y.S., Wong C.K.C. Evolution and roles of stanniocalcin. Mol. Cell. Endocrinol. 2012;349:272–280. doi: 10.1016/j.mce.2011.11.007. PubMed DOI
Johnston J., Ramos-Valdes Y., Stanton L.-A., Ladhani S., Beier F., Dimattia G.E. Human stanniocalcin-1 or -2 expressed in mice reduces bone size and severely inhibits cranial intramembranous bone growth. Transgenic Res. 2010;19:1017–1039. doi: 10.1007/s11248-010-9376-7. PubMed DOI
Law A.Y.S., Wong C.K.C. Stanniocalcin-1 and -2 promote angiogenic sprouting in HUVECs via VEGF/VEGFR2 and angiopoietin signaling pathways. Mol. Cell. Endocrinol. 2013;374:73–81. doi: 10.1016/j.mce.2013.04.024. PubMed DOI
Li K., Dong D., Yao L., Dai D., Gu X., Guo L. Identification of STC1 as an β-amyloid activated gene in human brain microvascular endothelial cells using cDNA microarray. Biochem. Biophys. Res. Commun. 2008;376:399–403. doi: 10.1016/j.bbrc.2008.08.158. PubMed DOI
Hägg P., Rehn M., Huhtala P., Väisänen T., Tamminen M., Pihlajaniemi T. Type XIII Collagen Is Identified as a Plasma Membrane Protein. J. Biol. Chem. 1998;273:15590–15597. doi: 10.1074/jbc.273.25.15590. PubMed DOI
Hägg P., Väisänen T., Tuomisto A., Rehn M., Tu H., Huhtala P., Eskelinen S., Pihlajaniemi T. Type XIII collagen: A novel cell adhesion component present in a range of cell-matrix adhesions and in the intercalated discs between cardiac muscle cells. Matrix Biol. 2001;19:727–742. doi: 10.1016/S0945-053X(00)00119-0. PubMed DOI
Miyake M., Hori S., Morizawa Y., Tatsumi Y., Toritsuka M., Ohnishi S., Shimada K., Furuya H., Khadka V.S., Deng Y., et al. Collagen type IV alpha 1 (COL4A1) and collagen type XIII alpha 1 (COL13A1) produced in cancer cells promote tumor budding at the invasion front in human urothelial carcinoma of the bladder. Oncotarget. 2017;8:36099–36114. doi: 10.18632/oncotarget.16432. PubMed DOI PMC
Yoshida T., Kato K., Yokoi K., Oguri M., Watanabe S., Metoki N., Yoshida H., Satoh K., Aoyagi Y., Nozawa Y., et al. Association of genetic variants with hemorrhagic stroke in Japanese individuals. Int. J. Mol. Med. 2010;25:649–656. PubMed
Gimbrone M.A., García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016;118:620–636. doi: 10.1161/CIRCRESAHA.115.306301. PubMed DOI PMC
Doherty T.M., Asotra K., Fitzpatrick L.A., Qiao J.-H., Wilkin D.J., Detrano R.C., Dunstan C.R., Shah P.K., Rajavashisth T.B. Calcification in atherosclerosis: Bone biology and chronic inflammation at the arterial crossroads. Proc. Natl. Acad. Sci. USA. 2003;100:11201–11206. doi: 10.1073/pnas.1932554100. PubMed DOI PMC
Madhavan M.V., Tarigopula M., Mintz G.S., Maehara A., Stone G.W., Généreux P. Coronary Artery Calcification. J. Am. Coll. Cardiol. 2014;63:1703–1714. doi: 10.1016/j.jacc.2014.01.017. PubMed DOI
Otsuka F., Sakakura K., Yahagi K., Joner M., Virmani R. Has Our Understanding of Calcification in Human Coronary Atherosclerosis Progressed? Arterioscler. Thromb. Vasc. Biol. 2014;34:724–736. doi: 10.1161/ATVBAHA.113.302642. PubMed DOI PMC
Motwani J.G., Topol E.J. Aortocoronary saphenous vein graft disease: Pathogenesis, predisposition, and prevention. Circulation. 1998;97:916–931. doi: 10.1161/01.CIR.97.9.916. PubMed DOI
Lardenoye J.H.P., de Vries M.R., Löwik C.W.G.M., Xu Q., Dhore C.R., Cleutjens J.P.M., van Hinsbergh V.W.M., van Bockel J.H., Quax P.H.A. Accelerated atherosclerosis and calcification in vein grafts: A study in APOE*3 Leiden transgenic mice. Circ. Res. 2002;91:577–584. doi: 10.1161/01.RES.0000036901.58329.D7. PubMed DOI
Nasso G., Anselmi A., Modugno P., Alessandrini F. Minimally invasive saphenous vein harvesting guided by preoperative echotomography: Results of a prospective randomized study. Interact. Cardiovasc. Thorac. Surg. 2005;4:464–468. doi: 10.1510/icvts.2005.107854. PubMed DOI
Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI
Nawrocki M.J., Celichowski P., Jankowski M., Kranc W., Bryja A., Borys-Wójcik S., Jeseta M., Antosik P., Bukowska D., Bruska M., et al. Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation—A primary cell culture approach. Med. J. Cell Biol. 2018;6:186–194. doi: 10.2478/acb-2018-0029. DOI
Budna J., Celichowski P., Bryja A., Jeseta M., Jankowski M., Bukowska D., Antosik P., Nowicki A., Brüssow K.P., Bruska M., et al. Expression Changes in Fatty acid Metabolic Processrelated Genes in Porcine Oocytes During in Vitro Maturation. Med. J. Cell Biol. 2018;6:48–54. doi: 10.2478/acb-2018-0009. DOI
Borys-Wójcik S., Kocherova I., Celichowski P., Popis M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Kempisty B. Protein oligomerization is the biochemical process highly up-regulated in porcine oocytes before in vitro maturation (IVM) Med. J. Cell Biol. 2018;6:155–162. doi: 10.2478/acb-2018-0025. DOI
Huang D.W., Sherman B.T., Tan Q., Kir J., Liu D., Bryant D., Guo Y., Stephens R., Baseler M.W., Lane H.C., et al. DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–W175. doi: 10.1093/nar/gkm415. PubMed DOI PMC
Walter W., Sánchez-Cabo F., Ricote M. GOplot: An R package for visually combining expression data with functional analysis: Figure 1. Bioinformatics. 2015;31:2912–2914. doi: 10.1093/bioinformatics/btv300. PubMed DOI