Hypervalent Iodine Based Reversible Covalent Bond in Rotaxane Synthesis
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
18-21801S
Grantová Agentura České Republiky
LM2015051
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_013/0001761
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015043
Ministerstvo Školství, Mládeže a Tělovýchovy
- Keywords
- anion receptors, bambusurils, dynamic covalent bonds, macrocycles, rotaxanes,
- Publication type
- Journal Article MeSH
Reversible covalent bonds play a significant role in achieving the high-yielding synthesis of mechanically interlocked molecules. Still, only a handful of such bonds have been successfully employed in synthetic procedures. Herein, we introduce a novel approach for the fast and simple preparation of interlocked molecules, combining the dynamic bond character of bis(acyloxy)iodate(I) anions with macrocyclic bambusuril anion receptors. The proof of principle was demonstrated on rotaxane synthesis, with near-quantitative yields observed in both the classical and "in situ" approach. The rotaxane formation was confirmed in the solid-state and solution by the X-ray and NMR studies. Our novel approach could be utilized in the fields of dynamic combinatorial chemistry, supramolecular polymers, or molecular machines, as well inspire further research on molecules that exhibit dynamic behavior, but owing to their high reactivity, have not been considered as constituents of more elaborate supramolecular structures.
See more in PubMed
Y. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev. 2013, 42, 6634-6654.
Dynamic Covalent Chemistry: Principles, Reactions, and Applications (Eds.: W. Zhang, Y. Jin), Wiley, Hoboken, 2017.
Z. P. Zhang, M. Z. Rong, M. Q. Zhang, Prog. Polym. Sci. 2018, 80, 39-93.
L. Xing, Z. Peng, W. Li, K. Wu, Acc. Chem. Res. 2019, 52, 1048-1058.
J. F. Reuther, S. D. Dahlhauser, E. V. Anslyn, Angew. Chem. Int. Ed. 2019, 58, 74-85;
Angew. Chem. 2019, 131, 76-88.
Y. Liu, J.-M. Lehn, A. K. H. Hirsch, Acc. Chem. Res. 2017, 50, 376-386.
S. Ulrich, Acc. Chem. Res. 2019, 52, 510-519.
P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K. M. Sanders, S. Otto, Chem. Rev. 2006, 106, 3652-3711.
G. Schill, Catenanes Rotaxanes and Knots, Academic Press, New York, 1971.
Molecular Catenanes, Rotaxanes and Knots (Eds.: J.-P. Sauvage, C. Dietrich-Buchecker), Wiley-VCH, Weinheim, 1999.
D. B. Amabilino, J. F. Stoddart, Chem. Rev. 1995, 95, 2725-2828.
C. J. Bruns, J. F. Stoddart, The Nature of the Mechanical Bond: From Molecules to Machines, Wiley, Hoboken, 2017.
A.-M. L. Fuller, D. A. Leigh, P. J. Lusby, Angew. Chem. Int. Ed. 2007, 46, 5015-5019;
Angew. Chem. 2007, 119, 5103-5107.
J. S. Hannam, T. J. Kidd, D. A. Leigh, A. J. Wilson, Org. Lett. 2003, 5, 1907-1910.
C. J. Campbell, D. A. Leigh, I. J. Vitorica-Yrezabal, S. L. Woltering, Angew. Chem. Int. Ed. 2014, 53, 13771-13774;
Angew. Chem. 2014, 126, 13991-13994.
P. T. Glink, A. I. Oliva, J. F. Stoddart, A. J. P. White, D. J. Williams, Angew. Chem. Int. Ed. 2001, 40, 1870-1875;
Angew. Chem. 2001, 113, 1922-1927.
S. J. Cantrill, S. J. Rowan, J. F. Stoddart, Org. Lett. 1999, 1, 1363-1366.
A. G. Kolchinski, R. A. Roesner, D. H. Busch, N. W. Alcock, Chem. Commun. 1998, 0, 1437-1438.
Y. Furusho, T. Hasegawa, A. Tsuboi, N. Kihara, T. Takata, Chem. Lett. 2000, 29, 18-19.
H. Ogino, J. Am. Chem. Soc. 1981, 103, 1303-1304.
S. Shinoda, T. Maeda, H. Miyake, H. Tsukube, Supramol. Chem. 2011, 23, 244-248.
Y.-D. Yang, C.-C. Fan, B. M. Rambo, H.-Y. Gong, L.-J. Xu, J.-F. Xiang, J. L. Sessler, J. Am. Chem. Soc. 2015, 137, 12966-12976.
K. Chichak, M. C. Walsh, N. R. Branda, Chem. Commun. 2000, 0, 847-848.
X. He, G. Li, H. Chen, Inorg. Chem. Commun. 2002, 5, 633-636.
K. Muñiz, B. García, C. Martínez, A. Piccinelli, Chem. Eur. J. 2017, 23, 1539-1545.
J. Svec, M. Necas, V. Sindelar, Angew. Chem. Int. Ed. 2010, 49, 2378-2381;
Angew. Chem. 2010, 122, 2428-2431.
M. A. Yawer, V. Havel, V. Sindelar, Angew. Chem. Int. Ed. 2015, 54, 276-279;
Angew. Chem. 2015, 127, 278-281.
T. Lizal, V. Sindelar, Isr. J. Chem. 2018, 58, 326-333.
V. Havel, V. Sindelar, ChemPlusChem 2015, 80, 1601-1606.
V. Havel, V. Sindelar, M. Necas, A. E. Kaifer, Chem. Commun. 2014, 50, 1372-1374.
N. H. Evans, P. D. Beer, Angew. Chem. Int. Ed. 2014, 53, 11716-11754;
Angew. Chem. 2014, 126, 11908-11948.
M. S. Vickers, P. D. Beer, Chem. Soc. Rev. 2007, 36, 211-225.
G. M. Hübner, J. Gläser, C. Seel, F. Vögtle, Angew. Chem. Int. Ed. 1999, 38, 383-386;
Angew. Chem. 1999, 111, 395-398.
C. Reuter, W. Wienand, G. M. Hübner, C. Seel, F. Vögtle, Chem. Eur. J. 1999, 5, 2692-2697.
P. Ghosh, O. Mermagen, C. A. Schalley, Chem. Commun. 2002, 0, 2628-2629.
C. A. Schalley, G. Silva, C. F. Nising, P. Linnartz, Helv. Chim. Acta 2002, 85, 1578-1596.
S. Lee, C.-H. Chen, A. H. Flood, Nat. Chem. 2013, 5, 704.
B. Qiao, Y. Liu, S. Lee, M. Pink, A. H. Flood, Chem. Commun. 2016, 52, 13675-13678.
M. D. Lankshear, P. D. Beer, Acc. Chem. Res. 2007, 40, 657-668.
M. J. Langton, S. W. Robinson, I. Marques, V. Félix, P. D. Beer, Nat. Chem. 2014, 6, 1039-1043.
G. T. Spence, P. D. Beer, Acc. Chem. Res. 2013, 46, 571-586.
J. A. Wisner, P. D. Beer, M. G. B. Drew, M. R. Sambrook, J. Am. Chem. Soc. 2002, 124, 12469-12476.
T. R. Reddy, D. S. Rao, K. Babachary, S. Kashyap, Eur. J. Org. Chem. 2016, 291-301.
G. Doleschall, G. Tóth, Tetrahedron 1980, 36, 1649-1665.
G. De Bo, G. Dolphijn, C. T. McTernan, D. A. Leigh, J. Am. Chem. Soc. 2017, 139, 8455-8457.
S. D. P. Fielden, D. A. Leigh, C. T. McTernan, B. Pérez-Saavedra, I. J. Vitorica-Yrezabal, J. Am. Chem. Soc. 2018, 140, 6049-6052.
T. V. S. Rao, D. S. Lawrence, J. Am. Chem. Soc. 1990, 112, 3614-3615.
R. S. Wylie, D. H. Macartney, J. Am. Chem. Soc. 1992, 114, 3136-3138.
Synthesis of Enantiomerically Pure Bambus[6]urils Utilizing Orthogonal Protection of Glycolurils