• This record comes from PubMed

Hypervalent Iodine Based Reversible Covalent Bond in Rotaxane Synthesis

. 2019 Dec 09 ; 58 (50) : 18182-18185. [epub] 20191030

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
18-21801S Grantová Agentura České Republiky
LM2015051 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_013/0001761 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015043 Ministerstvo Školství, Mládeže a Tělovýchovy

Reversible covalent bonds play a significant role in achieving the high-yielding synthesis of mechanically interlocked molecules. Still, only a handful of such bonds have been successfully employed in synthetic procedures. Herein, we introduce a novel approach for the fast and simple preparation of interlocked molecules, combining the dynamic bond character of bis(acyloxy)iodate(I) anions with macrocyclic bambusuril anion receptors. The proof of principle was demonstrated on rotaxane synthesis, with near-quantitative yields observed in both the classical and "in situ" approach. The rotaxane formation was confirmed in the solid-state and solution by the X-ray and NMR studies. Our novel approach could be utilized in the fields of dynamic combinatorial chemistry, supramolecular polymers, or molecular machines, as well inspire further research on molecules that exhibit dynamic behavior, but owing to their high reactivity, have not been considered as constituents of more elaborate supramolecular structures.

See more in PubMed

Y. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev. 2013, 42, 6634-6654.

Dynamic Covalent Chemistry: Principles, Reactions, and Applications (Eds.: W. Zhang, Y. Jin), Wiley, Hoboken, 2017.

Z. P. Zhang, M. Z. Rong, M. Q. Zhang, Prog. Polym. Sci. 2018, 80, 39-93.

L. Xing, Z. Peng, W. Li, K. Wu, Acc. Chem. Res. 2019, 52, 1048-1058.

J. F. Reuther, S. D. Dahlhauser, E. V. Anslyn, Angew. Chem. Int. Ed. 2019, 58, 74-85;

Angew. Chem. 2019, 131, 76-88.

Y. Liu, J.-M. Lehn, A. K. H. Hirsch, Acc. Chem. Res. 2017, 50, 376-386.

S. Ulrich, Acc. Chem. Res. 2019, 52, 510-519.

P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K. M. Sanders, S. Otto, Chem. Rev. 2006, 106, 3652-3711.

G. Schill, Catenanes Rotaxanes and Knots, Academic Press, New York, 1971.

Molecular Catenanes, Rotaxanes and Knots (Eds.: J.-P. Sauvage, C. Dietrich-Buchecker), Wiley-VCH, Weinheim, 1999.

D. B. Amabilino, J. F. Stoddart, Chem. Rev. 1995, 95, 2725-2828.

C. J. Bruns, J. F. Stoddart, The Nature of the Mechanical Bond: From Molecules to Machines, Wiley, Hoboken, 2017.

A.-M. L. Fuller, D. A. Leigh, P. J. Lusby, Angew. Chem. Int. Ed. 2007, 46, 5015-5019;

Angew. Chem. 2007, 119, 5103-5107.

J. S. Hannam, T. J. Kidd, D. A. Leigh, A. J. Wilson, Org. Lett. 2003, 5, 1907-1910.

C. J. Campbell, D. A. Leigh, I. J. Vitorica-Yrezabal, S. L. Woltering, Angew. Chem. Int. Ed. 2014, 53, 13771-13774;

Angew. Chem. 2014, 126, 13991-13994.

P. T. Glink, A. I. Oliva, J. F. Stoddart, A. J. P. White, D. J. Williams, Angew. Chem. Int. Ed. 2001, 40, 1870-1875;

Angew. Chem. 2001, 113, 1922-1927.

S. J. Cantrill, S. J. Rowan, J. F. Stoddart, Org. Lett. 1999, 1, 1363-1366.

A. G. Kolchinski, R. A. Roesner, D. H. Busch, N. W. Alcock, Chem. Commun. 1998, 0, 1437-1438.

Y. Furusho, T. Hasegawa, A. Tsuboi, N. Kihara, T. Takata, Chem. Lett. 2000, 29, 18-19.

H. Ogino, J. Am. Chem. Soc. 1981, 103, 1303-1304.

S. Shinoda, T. Maeda, H. Miyake, H. Tsukube, Supramol. Chem. 2011, 23, 244-248.

Y.-D. Yang, C.-C. Fan, B. M. Rambo, H.-Y. Gong, L.-J. Xu, J.-F. Xiang, J. L. Sessler, J. Am. Chem. Soc. 2015, 137, 12966-12976.

K. Chichak, M. C. Walsh, N. R. Branda, Chem. Commun. 2000, 0, 847-848.

X. He, G. Li, H. Chen, Inorg. Chem. Commun. 2002, 5, 633-636.

K. Muñiz, B. García, C. Martínez, A. Piccinelli, Chem. Eur. J. 2017, 23, 1539-1545.

J. Svec, M. Necas, V. Sindelar, Angew. Chem. Int. Ed. 2010, 49, 2378-2381;

Angew. Chem. 2010, 122, 2428-2431.

M. A. Yawer, V. Havel, V. Sindelar, Angew. Chem. Int. Ed. 2015, 54, 276-279;

Angew. Chem. 2015, 127, 278-281.

T. Lizal, V. Sindelar, Isr. J. Chem. 2018, 58, 326-333.

V. Havel, V. Sindelar, ChemPlusChem 2015, 80, 1601-1606.

V. Havel, V. Sindelar, M. Necas, A. E. Kaifer, Chem. Commun. 2014, 50, 1372-1374.

N. H. Evans, P. D. Beer, Angew. Chem. Int. Ed. 2014, 53, 11716-11754;

Angew. Chem. 2014, 126, 11908-11948.

M. S. Vickers, P. D. Beer, Chem. Soc. Rev. 2007, 36, 211-225.

G. M. Hübner, J. Gläser, C. Seel, F. Vögtle, Angew. Chem. Int. Ed. 1999, 38, 383-386;

Angew. Chem. 1999, 111, 395-398.

C. Reuter, W. Wienand, G. M. Hübner, C. Seel, F. Vögtle, Chem. Eur. J. 1999, 5, 2692-2697.

P. Ghosh, O. Mermagen, C. A. Schalley, Chem. Commun. 2002, 0, 2628-2629.

C. A. Schalley, G. Silva, C. F. Nising, P. Linnartz, Helv. Chim. Acta 2002, 85, 1578-1596.

S. Lee, C.-H. Chen, A. H. Flood, Nat. Chem. 2013, 5, 704.

B. Qiao, Y. Liu, S. Lee, M. Pink, A. H. Flood, Chem. Commun. 2016, 52, 13675-13678.

M. D. Lankshear, P. D. Beer, Acc. Chem. Res. 2007, 40, 657-668.

M. J. Langton, S. W. Robinson, I. Marques, V. Félix, P. D. Beer, Nat. Chem. 2014, 6, 1039-1043.

G. T. Spence, P. D. Beer, Acc. Chem. Res. 2013, 46, 571-586.

J. A. Wisner, P. D. Beer, M. G. B. Drew, M. R. Sambrook, J. Am. Chem. Soc. 2002, 124, 12469-12476.

T. R. Reddy, D. S. Rao, K. Babachary, S. Kashyap, Eur. J. Org. Chem. 2016, 291-301.

G. Doleschall, G. Tóth, Tetrahedron 1980, 36, 1649-1665.

G. De Bo, G. Dolphijn, C. T. McTernan, D. A. Leigh, J. Am. Chem. Soc. 2017, 139, 8455-8457.

S. D. P. Fielden, D. A. Leigh, C. T. McTernan, B. Pérez-Saavedra, I. J. Vitorica-Yrezabal, J. Am. Chem. Soc. 2018, 140, 6049-6052.

T. V. S. Rao, D. S. Lawrence, J. Am. Chem. Soc. 1990, 112, 3614-3615.

R. S. Wylie, D. H. Macartney, J. Am. Chem. Soc. 1992, 114, 3136-3138.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...