NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 GM130091
NIGMS NIH HHS - United States
U01 CA152813
NCI NIH HHS - United States
U24 CA210985
NCI NIH HHS - United States
R01 GM112490
NIGMS NIH HHS - United States
K01 DK101632
NIDDK NIH HHS - United States
R01 GM049077
NIGMS NIH HHS - United States
S10 OD018530
NIH HHS - United States
PubMed
31591262
PubMed Central
PMC6944243
DOI
10.1074/mcp.ra119.001677
PII: S1535-9476(20)30003-7
Knihovny.cz E-resources
- Keywords
- Glycomics, NISTmAb, fluorescence, glycan, glycopeptide, glycoproteins, glycosylation, interlaboratory study, mass spectrometry, reference antibody,
- MeSH
- Biopharmaceutics methods MeSH
- Biological Products * MeSH
- Glycomics methods MeSH
- Glycopeptides metabolism MeSH
- Glycosylation MeSH
- Laboratories MeSH
- Humans MeSH
- Antibodies, Monoclonal chemistry metabolism MeSH
- Polysaccharides metabolism MeSH
- Protein Processing, Post-Translational MeSH
- Proteomics methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Biological Products * MeSH
- Glycopeptides MeSH
- Antibodies, Monoclonal MeSH
- Polysaccharides MeSH
Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods.
Agilent Technologies Inc 5301 Stevens Creek Blvd Santa Clara California 95051
Analytical Development Agensys Inc 1800 Steward Street Santa Monica California 90404
Analytical Development Biogen 14 Cambridge Center Cambridge Massachusetts 02142
Analytical R and D MilliporeSigma 2909 Laclede Ave St Louis Missouri 63103
Astellas Pharma 5 2 3 Tokodai Tsukiba Ibaraki 300 2698 Japan
AstraZeneca Granta Park Cambridgeshire CB21 6GH United Kingdom
Bioprocessing Technology Institute 20 Biopolis Way Level 3 Singapore 138668
Bruker Daltonik GmbH Fahrenheitstr 4 28359 Bremen Germany
Centre d'Immunologie Pierre Fabre 5 Avenue Napoléon 3 BP 60497 74164 St Julien en Genevois France
CICbiomaGUNE Paseo Miramon 182 20009 San Sebastian Spain
Delaware Biotechnology Institute University of Delaware 15 Innovation Way Newark Delaware 19711
Department of Chemistry and Biochemistry Texas Tech University 2500 Broadway Lubbock Texas 79409
Department of Chemistry Georgia State University 100 Piedmont Avenue Atlanta Georgia 30303
Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
Department of Chemistry University of California One Shields Ave Davis California 95616
Department of Chemistry University of Hamburg Martin Luther King Pl 6 20146 Hamburg Germany
Department of Chemistry University of Manitoba 144 Dysart Road Winnipeg Manitoba Canada R3T 2N2
Department of Chemistry Waters Corporation 34 Maple Street Milford Massachusetts 01757
Department of Pathology Johns Hopkins University 400 N Broadway Street Baltimore Maryland 21287
Department of Urology Boston Children's Hospital 300 Longwood Avenue Boston Massachusetts 02115
Glycoscience Research Laboratory Genos Borongajska cesta 83h 10 000 Zagreb Croatia
glyXera GmbH Brenneckestrasse 20 * ZENIT 39120 Magdeburg Germany
ImmunoGen 830 Winter Street Waltham Massachusetts 02451
Ludger Limited Culham Science Centre Abingdon Oxfordshire OX14 3EB United Kingdom
Mass Spec Core Facility KBI Biopharma 1101 Hamlin Road Durham North Carolina 27704
Merck 2015 Galloping Hill Rd Kenilworth New Jersey 07033
MS Bioworks LLC 3950 Varsity Drive Ann Arbor Michigan 48108
MSD Molenstraat 110 5342 CC Oss The Netherlands
New England Biolabs Inc 240 County Road Ipswich Massachusetts 01938
New York University 100 Washington Square East New York City New York 10003
Pantheon 201 College Road East Princeton New Jersey 08540
Pfizer Inc 1 Burtt Road Andover Massachusetts 01810
Proteodynamics ZI La Varenne 20 22 rue Henri et Gilberte Goudier 63200 RIOM France
Proteomics Core Facility University of Gothenburg Medicinaregatan 1G SE 41390 Gothenburg Sweden
ProZyme Inc 3832 Bay Center Place Hayward California 94545
Sumitomo Bakelite Co Ltd 1 5 Muromati 1 Chome Nishiku Kobe 651 2241 Japan
Synthon Biopharmaceuticals Microweg 22 P O Box 7071 6503 GN Nijmegen The Netherlands
Takeda Pharmaceuticals International Co 40 Landsdowne Street Cambridge Massachusetts 02139
Thermo Fisher Scientific 1214 Oakmead Parkway Sunnyvale California 94085
See more in PubMed
Yang S., Li Y., Shah P., and Zhang H. (2013) Glycomic analysis using glycoprotein immobilization for glycan extraction. Anal. Chem. 85, 5555–5561 PubMed PMC
Vreeker G. C. M., and Wuhrer M. (2017) Reversed-phase separation methods for glycan analysis. Anal. Bioanal. Chem. 409, 359–378 PubMed PMC
Ruhaak L. R., Zauner G., Huhn C., Bruggink C., Deelder A. M., and Wuhrer M. (2010) Glycan labeling strategies and their use in identification and quantification. Anal. Bioanal. Chem. 397, 3457–3481 PubMed PMC
Dotz V., Haselberg R., Shubhakar A., Kozak R. P., Falck D., Rombouts Y., Reusch D., Somsen G. W., Fernandes D. L., and Wuhrer M. (2015) Mass spectrometry for glycosylation analysis of biopharmaceuticals. Trac-Trend Anal. Chem. 73, 1–9
O'Flaherty R., Muniyappa M., Walsh I., Stockmann H., Hutson R., Saldova R., and Rudd P. M. (2016) High-throughput sequential glycoprofiling of six abundant glycoproteins IgG, IgA, IgM, transferrin, haptoglobin and alpha-1-antitrypsin in ovarian cancer. Glycobiology 26, 1430–1431
Beck A., Wagner-Rousset E., Ayoub D., Van Dorsselaer A., and Sanglier-Cianferani S. (2013) Characterization of therapeutic antibodies and related products. Anal. Chem. 85, 715–736 PubMed
Beck A., Wagner-Rousset E., Bussat M. C., Lokteff M., Klinguer-Hamour C., Haeuw J. F., Goetsch L., Wurch T., Van Dorsselaer A., and Corvaia N. (2008) Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. Curr. Pharm. Biotechno. 9, 482–501 PubMed
Hecht E. S., McCord J. P., and Muddiman D. C. (2015) Definitive screening design optimization of mass spectrometry parameters for sensitive comparison of filter and solid phase extraction purified, INLIGHT plasma N-glycans. Anal. Chem. 87, 7305–7312 PubMed PMC
Walker S. H., Taylor A. D., and Muddiman D. C. (2013) Individuality normalization when labeling with isotopic glycan hydrazide tags (INLIGHT): a novel glycan-relative quantification strategy. J. Am. Soc. Mass Spectr. 24, 1376–1384 PubMed PMC
Hu Y. L., Shihab T., Zhou S. Y., Wooding K., and Mechref Y. (2016) LC-MS/MS of permethylated N-glycans derived from model and human blood serum glycoproteins. Electrophoresis 37, 1498–1505 PubMed PMC
Mechref Y., and Muddiman D. C. (2017) Recent advances in glycomics, glycoproteomics and allied topics. Anal. Bioanal. Chem. 409, 355–357 PubMed
Zhou S. Y., Hu Y. L., Veillon L., Snovida S. I., Rogers J. C., Saba J., and Mechref Y. (2016) Quantitative LC-MS/MS glycomic analysis of biological samples using aminoxyTMT. Anal. Chem. 88, 7515–7522 PubMed PMC
Yang N., Goonatilleke E., Park D., Song T., Fan G. R., and Lebrilla C. B. (2016) Quantitation of site-specific glycosylation in manufactured recombinant monoclonal antibody drugs. Anal. Chem. 88, 7091–7100 PubMed PMC
Hong Q. T., Ruhaak L. R., Stroble C., Parker E., Huang J. C., Maverakis E., and Lebrilla C. B. (2015) A method for comprehensive glycosite-mapping and direct quantitation of serum glycoproteins. J. Proteome Res. 14, 5179–5192 PubMed PMC
Giorgetti J., D'Atri V., Canonge J., Lechner A., Guillarme D., Colas O., Wagner-Rousset E., Beck A., Leize-Wagner E., and Francois Y. N. (2018) Monoclonal antibody N-glycosylation profiling using capillary electrophoresis - Mass spectrometry: Assessment and method validation. Talanta 178, 530–537 PubMed
Dong Q., Yan X., Liang Y., and Stein S. E. (2016) In-depth characterization and spectral library building of glycopeptides in the tryptic digest of a monoclonal antibody using 1D and 2D LC-MS/MS. J. Proteome Res. 15, 1472–1486 PubMed
Wada Y., Azadi P., Costello C. E., Dell A., Dwek R. A., Geyer H., Geyer R., Kakehi K., Karlsson N. G., Kato K., Kawasaki N., Khoo K. H., Kim S., Kondo A., Lattova E., Mechref Y., Miyoshi E., Nakamura K., Narimatsu H., Novotny M. V., Packer N. H., Perreault H., Peter-Katalinic J., Pohlentz G., Reinhold V. N., Rudd P. M., Suzuki A., and Taniguchi N. (2007) Comparison of the methods for profiling glycoprotein glycans–HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 17, 411–422 PubMed
Wada Y., Dell A., Haslam S. M., Tissot B., Canis K., Azadi P., Backstrom M., Costello C. E., Hansson G. C., Hiki Y., Ishihara M., Ito H., Kakehi K., Karlsson N., Hayes C. E., Kato K., Kawasaki N., Khoo K. H., Kobayashi K., Kolarich D., Kondo A., Lebrilla C., Nakano M., Narimatsu H., Novak J., Novotny M. V., Ohno E., Packer N. H., Palaima E., Renfrow M. B., Tajiri M., Thomsson K. A., Yagi H., Yu S. Y., and Taniguchi N. (2010) Comparison of methods for profiling O-glycosylation: Human Proteome Organisation Human Disease Glycomics/Proteome Initiative multi-institutional study of IgA1. Mol. Cell. Proteomics 9, 719–727 PubMed PMC
Thobhani S., Yuen C. T., Bailey M. J., and Jones C. (2009) Identification and quantification of N-linked oligosaccharides released from glycoproteins: an inter-laboratory study. Glycobiology 19, 201–211 PubMed
Leymarie N., Griffin P. J., Jonscher K., Kolarich D., Orlando R., McComb M., Zaia J., Aguilan J., Alley W. R., Altmann F., Ball L. E., Basumallick L., Bazemore-Walker C. R., Behnken H., Blank M. A., Brown K. J., Bunz S. C., Cairo C. W., Cipollo J. F., Daneshfar R., Desaire H., Drake R. R., Go E. P., Goldman R., Gruber C., Halim A., Hathout Y., Hensbergen P. J., Horn D. M., Hurum D., Jabs W., Larson G., Ly M., Mann B. F., Marx K., Mechref Y., Meyer B., Möginger U., Neusüâ C., Nilsson J., Novotny M. V., Nyalwidhe J. O., Packer N. H., Pompach P., Reiz B., Resemann A., Rohrer J. S., Ruthenbeck A., Sanda M., Schulz J. M., Schweiger-Hufnagel U., Sihlbom C., Song E., Staples G. O., Suckau D., Tang H., Thaysen-Andersen M., Viner R. I., An Y., Valmu L., Wada Y., Watson M., Windwarder M., Whittal R., Wuhrer M., Zhu Y., and Zou C. (2013) Interlaboratory study on differential analysis of protein glycosylation by mass spectrometry: The ABRF Glycoprotein Research Multi-Institutional Study 2012. Mol. Cell. Proteomics 12, 2935–2951 PubMed PMC
Reusch D., Haberger M., Maier B., Maier M., Kloseck R., Zimmermann B., Hook M., Szabo Z., Tep S., Wegstein J., Alt N., Bulau P., and Wuhrer M. (2015) Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-Part 1: Separation-based methods. Mabs 7, 167–179 PubMed PMC
Formolo T., Ly M., Levy M., Kilpatrick L., Lute S., Phinney K., Marzilli L., Brorson K., Boyne M., Davis D., and Schiel J. (2015) Determination of the NISTmAb Primary Structure. In State-of-the-Art and Emerging Technologies for Therapeutic Monoclonal Antibody Characterization Volume 2. Biopharmaceutical Characterization: The NISTmAb Case Study (Schiel John E., Davis Darryl L., Borisov Oleg V., eds.) Chapter 1, pp. 1–62, American Chemical Society
Schiel J. E., and Turner A. (2018) The NISTmAb Reference Material 8671 lifecycle management and quality plan. Anal. Bioanal. Chem. 410, 2067–2078 PubMed PMC
De Leoz M. L. A., Duewer D. L., and Stein S. E. (2017) NIST Interlaboratory Study on the Glycosylation of NISTmAb, a Monoclonal Antibody Reference Material. In NIST Internal Report (NISTIR), 8186
Varki A., Cummings R. D., Esko J. D., Freeze H. H., Stanley P., Marth J. D., Bertozzi C. R., Hart G. W., and Etzler M. E. (2009) Symbol nomenclature for glycan representation. Proteomics 9, 5398–5399 PubMed PMC
Ceroni A., Maass K., Geyer H., Geyer R., Dell A., and Haslam S. M. (2008) GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 7, 1650–1659 PubMed
de Jong S. E., Selman M. H., Adegnika A. A., Amoah A. S., van Riet E., Kruize Y. C., Raynes J. G., Rodriguez A., Boakye D., von Mutius E., Knulst A. C., Genuneit J., Cooper P. J., Hokke C. H., Wuhrer M., and Yazdanbakhsh M. (2016) IgG1 Fc N-glycan galactosylation as a biomarker for immune activation. Sci. Rep. 6, 28207. PubMed PMC
Halim A., Westerlind U., Pett C., Schorlemer M., Ruetschi U., Brinkmalm G., Sihlbom C., Lengqvist J., Larson G., and Nilsson J. (2014) Assignment of saccharide identities through analysis of oxonium ion fragmentation profiles in LC-MS/MS of glycopeptides. J. Proteome Res. 13, 6024–6032 PubMed
Yu J., Schorlemer M., Gomez Toledo A., Pett C., Sihlbom C., Larson G., Westerlind U., Nilsson J., and Distinctive M. S. (2016) /MS Fragmentation Pathways of Glycopeptide-Generated Oxonium Ions Provide Evidence of the Glycan Structure. Chemistry 22, 1114–1124 PubMed
Pompach P., Ashline D. J., Brnakova Z., Benicky J., Sanda M., and Goldman R. (2014) Protein and Site Specificity of Fucosylation in Liver-Secreted Glycoproteins. J. Proteome Res. 13, 5561–5569 PubMed PMC
Prien J. M., Stöckmann H., Albrecht S., Martin S. M., Varatta M., Furtado M., Hosselet S., Wang M., Formolo T., Rudd P. M., and Schiel J. E. (2015) Orthogonal Technologies for NISTmAb N-Glycan Structure Elucidation and Quantitation. In State-of-the-Art and Emerging Technologies for Therapeutic Monoclonal Antibody Characterization Volume 2. Biopharmaceutical Characterization: The NISTmAb Case Study. Schiel John E., Davis Darryl L., Borisov Oleg V., eds.) Chapter 4, pp. 185–235, American Chemical Society
Benedetti E., Pucic-Bakovic M., Keser T., Wahl A., Hassinen A., Yang J. Y., Liu L., Trbojevic-Akmacic I., Razdorov G., Stambuk J., Klariæ L., Ugrina I., Selman M. H. J., Wuhrer M., Rudan I., Polasek O., Hayward C., Grallert H., Strauch K., Peters A., Meitinger T., Gieger C., Vilaj M., Boons G. J., Moremen K. W., Ovchinnikova T., Bovin N., Kellokumpu S., Theis F. J., Lauc G., and Krumsiek J. (2017) Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nat. Commun. 8, 1483. PubMed PMC
Pilobello K. T., Krishnamoorthy L., Slawek D., and Mahal L. K. (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem 6, 985–989 PubMed
Duewer D. L., Kline M. C., Sharpless K. E., Thomas J. B., Gary K. T., and Sowell A. L. (1999) Micronutrients measurement quality assurance program: helping participants use interlaboratory comparison exercise results to improve their long-term measurement performance. Anal. Chem. 71, 1870–1878 PubMed
Youden W. J. (1959) Graphical diagnosis of interlaboratory test results. Industrial Quality Control XV, 29–33
Shirono K., Iwase K., Okazaki H., Yamazawa M., Shikakume K., Fukumoto N., Murakami M., Yanagisawa M., and Tsugoshi T. (2013) A study on the utilization of the Youden plot to evaluate proficiency test results. Accredit. Qual. Assur. 18, 161–174
Horwitz W. (1982) Evaluation of analytical methods used for regulation of foods and drugs. Anal. Chem. 54, 67–76
Thompson M., and Lowthian P. J. (1997) The Horwitz function revisited. J. AOAC. Int. 80, 676–679