The ant Lasius niger is a new source of bacterial enzymes with biotechnological potential for bleaching dye
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31645628
PubMed Central
PMC6811527
DOI
10.1038/s41598-019-51669-w
PII: 10.1038/s41598-019-51669-w
Knihovny.cz E-zdroje
- MeSH
- Actinobacteria enzymologie izolace a purifikace metabolismus MeSH
- Bacteria enzymologie izolace a purifikace metabolismus MeSH
- barvicí látky izolace a purifikace metabolismus MeSH
- biodegradace MeSH
- biotechnologie MeSH
- Brevibacterium enzymologie izolace a purifikace metabolismus MeSH
- Firmicutes enzymologie izolace a purifikace metabolismus MeSH
- Formicidae mikrobiologie MeSH
- lakasa izolace a purifikace metabolismus MeSH
- látky znečišťující životní prostředí izolace a purifikace metabolismus MeSH
- NADH, NADPH oxidoreduktasy izolace a purifikace metabolismus MeSH
- nitroreduktasy MeSH
- peroxidasa izolace a purifikace metabolismus MeSH
- Streptomyces enzymologie izolace a purifikace metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- azoreductase MeSH Prohlížeč
- barvicí látky MeSH
- lakasa MeSH
- látky znečišťující životní prostředí MeSH
- NADH, NADPH oxidoreduktasy MeSH
- nitroreduktasy MeSH
- peroxidasa MeSH
Industrial synthetic dyes cause health and environmental problems. This work describes the isolation of 84 bacterial strains from the midgut of the Lasius niger ant and the evaluation of their potential application in dye bioremediation. Strains were identified and classified as judged by rRNA 16S. The most abundant isolates were found to belong to Actinobacteria (49%) and Firmicutes (47.2%). We analyzed the content in laccase, azoreductase and peroxidase activities and their ability to degrade three known dyes (azo, thiazine and anthraquinone) with different chemical structures. Strain Ln26 (identified as Brevibacterium permense) strongly decolorized the three dyes tested at different conditions. Strain Ln78 (Streptomyces ambofaciens) exhibited a high level of activity in the presence of Toluidine Blue (TB). It was determined that 8.5 was the optimal pH for these two strains, the optimal temperature conditions ranged between 22 and 37 °C, and acidic pHs and temperatures around 50 °C caused enzyme inactivation. Finally, the genome of the most promising candidate (Ln26, approximately 4.2 Mb in size) was sequenced. Genes coding for two DyP-type peroxidases, one laccase and one azoreductase were identified and account for the ability of this strain to effectively oxidize a variety of dyes with different chemical structures.
Associated Unit USAL CSIC Salamanca Spain
Spanish Portuguese Institute for Agricultural Research Salamanca Spain
Zobrazit více v PubMed
Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environ. Int. 2004;30:953–971. doi: 10.1016/j.envint.2004.02.001. PubMed DOI
Shah MP, Patel KA, Nair SS, Darji AM. Isolation, Identification and Screening of Dye Decolorizing Bacteria. Am. J. Microbiol. Res. 2013;1:62–70. doi: 10.12691/ajmr-1-4-1. DOI
Tan, N. C. et al. Degradation of azo dye Mordant Yellow 10 in a sequential anaerobic and bioaugmented aerobic bioreactor. Water Sci. Technol. 42 (2000).
McMullan G, et al. Microbial decolourisation and degradation of textile dyes. Appl. Microbiol. Biotechnol. 2001;56:81–87. doi: 10.1007/s002530000587. PubMed DOI
Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001;77:247–255. doi: 10.1016/S0960-8524(00)00080-8. PubMed DOI
Claus H. Laccases and their occurrence in prokaryotes. Arch. Microbiol. 2003;179:145–150. doi: 10.1007/s00203-002-0510-7. PubMed DOI
Baldrian P. Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme. Appl. Microbiol. Biotechnol. 2004;63:560–563. doi: 10.1007/s00253-003-1434-0. PubMed DOI
Givaudan A, et al. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol. Lett. 1993;108:205–210. doi: 10.1111/j.1574-6968.1993.tb06100.x. DOI
Solano F, Garcia E, Perez D, Sanchez-Amat A. Isolation and Characterization of Strain MMB-1 (CECT 4803), a Novel Melanogenic Marine Bacterium. Appl. Environ. Microbiol. 1997;63:3499–506. PubMed PMC
Diamantidis G, Effosse A, Potier P, Bally R. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol. Biochem. 2000;32:919–927. doi: 10.1016/S0038-0717(99)00221-7. DOI
Sharma P, Goel R, Capalash N. Bacterial laccases. World J. Microbiol. Biotechnol. 2007;23:823–832. doi: 10.1007/s11274-006-9305-3. DOI
Galai S, Limam F, Marzouki MN. A New Stenotrophomonas maltophilia Strain Producing Laccase. Use in Decolorization of Synthetics Dyes. Appl. Biochem. Biotechnol. 2009;158:416–431. doi: 10.1007/s12010-008-8369-y. PubMed DOI
Dos Santos, A. B., Cervantes, F. J. & Van Lier, J. B. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology., 10.1016/j.biortech.2006.11.013 (2007). PubMed
Mendes, S., Robalo, M. P. & Martins, L. O. Bacterial enzymes and multi-enzymatic systems for cleaning-up dyes from the environment. In Microbial Degradation of Synthetic Dyes in Wastewaters (pp. 27–55), Springer, Cham (2015)
Singh RL, Singh PK, Singh RP. Enzymatic decolorization and degradation of azo dyes - A review. Int. Biodeterior. Biodegrad. 2015;104:21–31. doi: 10.1016/j.ibiod.2015.04.027. DOI
Parshetti GK, Telke AA, Kalyani DC, Govindwar SP. Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. J. Hazard. Mater. 2010;176:503–509. doi: 10.1016/j.jhazmat.2009.11.058. PubMed DOI
Leelakriangsak M, Borisut S. Characterization of the decolorizing activity of azo dyes by Bacillus subtilis azoreductase AzoR1. Songklanakarin. J. Sci. Technol. 2012;34:509–516.
Nakanishi M, Yatome C, Ishida N, Kitade Y. Putative ACP Phosphodiesterase Gene (acpD) Encodes an Azoreductase. J. Biol. Chem. 2001;276:46394–46399. doi: 10.1074/jbc.M104483200. PubMed DOI
Suzuki Y, Yoda T, Ruhul A, Sugiura W. Molecular Cloning and Characterization of the Gene Coding for Azoreductase from Bacillus sp. OY1-2 Isolated from Soil. J. Biol. Chem. 2001;276:9059–9065. doi: 10.1074/jbc.M008083200. PubMed DOI
Xu M, Guo J, Sun G. Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions. Appl. Microbiol. Biotechnol. 2007;76:719–726. doi: 10.1007/s00253-007-1032-7. PubMed DOI
Goby JD, Penner MH, Lajoie CA, Kelly CJ. Methylene blue as a lignin surrogate in manganese peroxidase reaction systems. Anal. Biochem. 2017;537:37–40. doi: 10.1016/j.ab.2017.08.010. PubMed DOI
Singh R, Eltis LD. The multihued palette of dye-decolorizing peroxidases. Arch. Biochem. Biophys. 2015;574:56–65. doi: 10.1016/j.abb.2015.01.014. PubMed DOI
Ulson de Souza SMAG, Forgiarini E, Ulson de Souza AA. Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP) J. Hazard. Mater. 2007;147:1073–1078. doi: 10.1016/j.jhazmat.2007.06.003. PubMed DOI
Sugawara K, et al. Characterization of a novel DyP-type peroxidase from Streptomyces avermitilis. J. Biosci. Bioeng. 2017;123:425–430. doi: 10.1016/j.jbiosc.2016.12.001. PubMed DOI
Kalyani, D. C., Telke, A. A., Govindwar, S. P. & Jadhav, P. J. Biodregation and detoxification of reactive textile dye by isolated Psedumonas sp. SUK1. pdf. Water Environment Research, Volune 81, number 3 (2009). PubMed
Khan R, Bhawana P, Fulekar MH. Microbial decolorization and degradation of synthetic dyes: A review. Rev. Environ. Sci. Biotechnol. 2013;12:75–97. doi: 10.1007/s11157-012-9287-6. DOI
Chung K-T. Azo dyes and human health: A review. J. Environ. Sci. Heal. Part C. 2016;34:233–261. doi: 10.1080/10590501.2016.1236602. PubMed DOI
Funke G, Aravena-Roman M, Frodl R. First description of Curtobacterium spp. isolated from human clinical specimens. J. Clin. Microbiol. 2005;43:1032–6. doi: 10.1128/JCM.43.3.1032-1036.2005. PubMed DOI PMC
Scharf ME, Tartar A. Termite digestomes as sources for novel lignocellulases. Biofuels. Bioprod. Biorefining. 2008;2:540–552. doi: 10.1002/bbb.107. DOI
Tartar A, et al. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol. Biofuels. 2009;2:25. doi: 10.1186/1754-6834-2-25. PubMed DOI PMC
Zakalyukina YV, Golichenkov MV, Brovkina OI, Putyatina TS. Comparative study of actinomycete communities associated with Lasius niger and Formica cunicularia ants and their nests. Bull. Moscow Univ. Biol. Sci. 2014;69(3):118–124.
Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Peloquin JJ, Greenberg L. Identification of midgut bacteria from fourth instar red imported fire ant larvae, Solenopsis invicta Buren (Hymenoptera: Formicidae) J. Agric. Urban Entomol. 2003;20:157–164.
Li H, Medina F, Vinson SB, Coates CJ. Isolation, characterization, and molecular identification of bacteria from the red imported fire ant (Solenopsis invicta) midgut. J. Invertebr. Pathol. 2005;89:203–209. doi: 10.1016/j.jip.2005.05.008. PubMed DOI
Haeder S, Wirth R, Herz H, Spiteller D. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc. Natl. Acad. Sci. USA. 2009;106:4742–6. doi: 10.1073/pnas.0812082106. PubMed DOI PMC
Devasia S, Nair AJ. Screening of Potent Laccase Producing Organisms Based on the Oxidation Pattern of Different Phenolic Substrates. Int. J. Curr. Microbiol. Appl. Sci. 2016;5:127–137. doi: 10.20546/ijcmas.2016.505.014. DOI
Sugiura W, Yoda T, Matsuba T, Tanaka Y, Suzuki Y. Expression and characterization of the genes encoding azoreductases from Bacillus subtilis and Geobacillus stearothermophilus. Biosci. Biotechnol. Biochem. 2006;70:1655–65. doi: 10.1271/bbb.60014. PubMed DOI
Wang W, et al. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase. Microb. Cell Fact. 2012;11:75. doi: 10.1186/1475-2859-11-75. PubMed DOI PMC
Ooi T, Shibata T, Matsumoto K, Kinoshita S, Taguchi S. Comparative Enzymatic Analysis of Azoreductases from Bacillus sp. B29. Biosci. Biotechnol. Biochem. 2009;73:1209–1211. doi: 10.1271/bbb.80872. PubMed DOI
Kiiskinen LL, Rättö M, Kruus K. Screening for novel laccase-producing microbes. J. Appl. Microbiol. 2004;97:640–646. doi: 10.1111/j.1365-2672.2004.02348.x. PubMed DOI
Mayer AM, Staples RC. Laccase: new functions for an old enzyme. Phytochemistry. 2002;60:551–565. doi: 10.1016/S0031-9422(02)00171-1. PubMed DOI
Kumar VV, Kirupha SD, Periyaraman P. Screening and induction of laccase activity in fungal species and its application in dye decolorization. African J. Miicrobiology Res. 2011;5:1261–1267. doi: 10.5897/AJMR10.894. DOI
Chen H, Hopper SL, Cerniglia CE. Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology. 2005;151:1433–41. doi: 10.1099/mic.0.27805-0. PubMed DOI PMC
Colpa DI, Fraaije MW, van Bloois E. DyP-type peroxidases: a promising and versatile class of enzymes. J. Ind. Microbiol. Biotechnol. 2014;41:1–7. doi: 10.1007/s10295-013-1371-6. PubMed DOI
Franciscon E, Grossman MJ, Paschoal JAR, Reyes FGR, Durrant LR. Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. Springerplus. 2012;1:37. doi: 10.1186/2193-1801-1-37. PubMed DOI PMC
Okino-Delgado, C. H., Zanutto-Elgui, M. R., do Prado, D. Z., Pereira, M. S. & Fleuri, L. F. Enzymatic Bioremediation: Current Status, Challenges of Obtaining Process, and Applications. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, 10, 79–101. Springer, Singapore. (2019)
Vincent, J. M. In A Manual for the Practical Study of the Root-Nodule Bacteria 1–13 (1970).
Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95–98.
Lim SH, Lee YH, Kang HW. Efficient recovery of lignocellulolytic enzymes of spent mushroom compost from oyster mushrooms, Pleurotus spp., and potential use in dye decolorization. Mycobiology. 2013;41:214–220. doi: 10.5941/MYCO.2013.41.4.214. PubMed DOI PMC
Betts WB, King JE. Oxidative coupling of 2,6-dimethoxyphenol by fungi and bacteria. Mycol. Res. 1991;95:526–530. doi: 10.1016/S0953-7562(09)80063-4. DOI
Solano F, Lucas-Elío P, López-Serrano D, Fernández E, Sanchez-Amat A. Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol. Lett. 2001;204:175–181. doi: 10.1111/j.1574-6968.2001.tb10882.x. PubMed DOI
Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–829. doi: 10.1101/gr.074492.107. PubMed DOI PMC
Aziz RK, et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics. 2008;9:75. doi: 10.1186/1471-2164-9-75. PubMed DOI PMC
Overbeek R, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) Nucleic Acids Res. 2014;42:D206–D214. doi: 10.1093/nar/gkt1226. PubMed DOI PMC
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016;428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI