The ant Lasius niger is a new source of bacterial enzymes with biotechnological potential for bleaching dye

. 2019 Oct 23 ; 9 (1) : 15217. [epub] 20191023

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31645628
Odkazy

PubMed 31645628
PubMed Central PMC6811527
DOI 10.1038/s41598-019-51669-w
PII: 10.1038/s41598-019-51669-w
Knihovny.cz E-zdroje

Industrial synthetic dyes cause health and environmental problems. This work describes the isolation of 84 bacterial strains from the midgut of the Lasius niger ant and the evaluation of their potential application in dye bioremediation. Strains were identified and classified as judged by rRNA 16S. The most abundant isolates were found to belong to Actinobacteria (49%) and Firmicutes (47.2%). We analyzed the content in laccase, azoreductase and peroxidase activities and their ability to degrade three known dyes (azo, thiazine and anthraquinone) with different chemical structures. Strain Ln26 (identified as Brevibacterium permense) strongly decolorized the three dyes tested at different conditions. Strain Ln78 (Streptomyces ambofaciens) exhibited a high level of activity in the presence of Toluidine Blue (TB). It was determined that 8.5 was the optimal pH for these two strains, the optimal temperature conditions ranged between 22 and 37 °C, and acidic pHs and temperatures around 50 °C caused enzyme inactivation. Finally, the genome of the most promising candidate (Ln26, approximately 4.2 Mb in size) was sequenced. Genes coding for two DyP-type peroxidases, one laccase and one azoreductase were identified and account for the ability of this strain to effectively oxidize a variety of dyes with different chemical structures.

Zobrazit více v PubMed

Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environ. Int. 2004;30:953–971. doi: 10.1016/j.envint.2004.02.001. PubMed DOI

Shah MP, Patel KA, Nair SS, Darji AM. Isolation, Identification and Screening of Dye Decolorizing Bacteria. Am. J. Microbiol. Res. 2013;1:62–70. doi: 10.12691/ajmr-1-4-1. DOI

Tan, N. C. et al. Degradation of azo dye Mordant Yellow 10 in a sequential anaerobic and bioaugmented aerobic bioreactor. Water Sci. Technol. 42 (2000).

McMullan G, et al. Microbial decolourisation and degradation of textile dyes. Appl. Microbiol. Biotechnol. 2001;56:81–87. doi: 10.1007/s002530000587. PubMed DOI

Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001;77:247–255. doi: 10.1016/S0960-8524(00)00080-8. PubMed DOI

Claus H. Laccases and their occurrence in prokaryotes. Arch. Microbiol. 2003;179:145–150. doi: 10.1007/s00203-002-0510-7. PubMed DOI

Baldrian P. Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme. Appl. Microbiol. Biotechnol. 2004;63:560–563. doi: 10.1007/s00253-003-1434-0. PubMed DOI

Givaudan A, et al. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol. Lett. 1993;108:205–210. doi: 10.1111/j.1574-6968.1993.tb06100.x. DOI

Solano F, Garcia E, Perez D, Sanchez-Amat A. Isolation and Characterization of Strain MMB-1 (CECT 4803), a Novel Melanogenic Marine Bacterium. Appl. Environ. Microbiol. 1997;63:3499–506. PubMed PMC

Diamantidis G, Effosse A, Potier P, Bally R. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol. Biochem. 2000;32:919–927. doi: 10.1016/S0038-0717(99)00221-7. DOI

Sharma P, Goel R, Capalash N. Bacterial laccases. World J. Microbiol. Biotechnol. 2007;23:823–832. doi: 10.1007/s11274-006-9305-3. DOI

Galai S, Limam F, Marzouki MN. A New Stenotrophomonas maltophilia Strain Producing Laccase. Use in Decolorization of Synthetics Dyes. Appl. Biochem. Biotechnol. 2009;158:416–431. doi: 10.1007/s12010-008-8369-y. PubMed DOI

Dos Santos, A. B., Cervantes, F. J. & Van Lier, J. B. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology., 10.1016/j.biortech.2006.11.013 (2007). PubMed

Mendes, S., Robalo, M. P. & Martins, L. O. Bacterial enzymes and multi-enzymatic systems for cleaning-up dyes from the environment. In Microbial Degradation of Synthetic Dyes in Wastewaters (pp. 27–55), Springer, Cham (2015)

Singh RL, Singh PK, Singh RP. Enzymatic decolorization and degradation of azo dyes - A review. Int. Biodeterior. Biodegrad. 2015;104:21–31. doi: 10.1016/j.ibiod.2015.04.027. DOI

Parshetti GK, Telke AA, Kalyani DC, Govindwar SP. Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. J. Hazard. Mater. 2010;176:503–509. doi: 10.1016/j.jhazmat.2009.11.058. PubMed DOI

Leelakriangsak M, Borisut S. Characterization of the decolorizing activity of azo dyes by Bacillus subtilis azoreductase AzoR1. Songklanakarin. J. Sci. Technol. 2012;34:509–516.

Nakanishi M, Yatome C, Ishida N, Kitade Y. Putative ACP Phosphodiesterase Gene (acpD) Encodes an Azoreductase. J. Biol. Chem. 2001;276:46394–46399. doi: 10.1074/jbc.M104483200. PubMed DOI

Suzuki Y, Yoda T, Ruhul A, Sugiura W. Molecular Cloning and Characterization of the Gene Coding for Azoreductase from Bacillus sp. OY1-2 Isolated from Soil. J. Biol. Chem. 2001;276:9059–9065. doi: 10.1074/jbc.M008083200. PubMed DOI

Xu M, Guo J, Sun G. Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions. Appl. Microbiol. Biotechnol. 2007;76:719–726. doi: 10.1007/s00253-007-1032-7. PubMed DOI

Goby JD, Penner MH, Lajoie CA, Kelly CJ. Methylene blue as a lignin surrogate in manganese peroxidase reaction systems. Anal. Biochem. 2017;537:37–40. doi: 10.1016/j.ab.2017.08.010. PubMed DOI

Singh R, Eltis LD. The multihued palette of dye-decolorizing peroxidases. Arch. Biochem. Biophys. 2015;574:56–65. doi: 10.1016/j.abb.2015.01.014. PubMed DOI

Ulson de Souza SMAG, Forgiarini E, Ulson de Souza AA. Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP) J. Hazard. Mater. 2007;147:1073–1078. doi: 10.1016/j.jhazmat.2007.06.003. PubMed DOI

Sugawara K, et al. Characterization of a novel DyP-type peroxidase from Streptomyces avermitilis. J. Biosci. Bioeng. 2017;123:425–430. doi: 10.1016/j.jbiosc.2016.12.001. PubMed DOI

Kalyani, D. C., Telke, A. A., Govindwar, S. P. & Jadhav, P. J. Biodregation and detoxification of reactive textile dye by isolated Psedumonas sp. SUK1. pdf. Water Environment Research, Volune 81, number 3 (2009). PubMed

Khan R, Bhawana P, Fulekar MH. Microbial decolorization and degradation of synthetic dyes: A review. Rev. Environ. Sci. Biotechnol. 2013;12:75–97. doi: 10.1007/s11157-012-9287-6. DOI

Chung K-T. Azo dyes and human health: A review. J. Environ. Sci. Heal. Part C. 2016;34:233–261. doi: 10.1080/10590501.2016.1236602. PubMed DOI

Funke G, Aravena-Roman M, Frodl R. First description of Curtobacterium spp. isolated from human clinical specimens. J. Clin. Microbiol. 2005;43:1032–6. doi: 10.1128/JCM.43.3.1032-1036.2005. PubMed DOI PMC

Scharf ME, Tartar A. Termite digestomes as sources for novel lignocellulases. Biofuels. Bioprod. Biorefining. 2008;2:540–552. doi: 10.1002/bbb.107. DOI

Tartar A, et al. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol. Biofuels. 2009;2:25. doi: 10.1186/1754-6834-2-25. PubMed DOI PMC

Zakalyukina YV, Golichenkov MV, Brovkina OI, Putyatina TS. Comparative study of actinomycete communities associated with Lasius niger and Formica cunicularia ants and their nests. Bull. Moscow Univ. Biol. Sci. 2014;69(3):118–124.

Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Peloquin JJ, Greenberg L. Identification of midgut bacteria from fourth instar red imported fire ant larvae, Solenopsis invicta Buren (Hymenoptera: Formicidae) J. Agric. Urban Entomol. 2003;20:157–164.

Li H, Medina F, Vinson SB, Coates CJ. Isolation, characterization, and molecular identification of bacteria from the red imported fire ant (Solenopsis invicta) midgut. J. Invertebr. Pathol. 2005;89:203–209. doi: 10.1016/j.jip.2005.05.008. PubMed DOI

Haeder S, Wirth R, Herz H, Spiteller D. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc. Natl. Acad. Sci. USA. 2009;106:4742–6. doi: 10.1073/pnas.0812082106. PubMed DOI PMC

Devasia S, Nair AJ. Screening of Potent Laccase Producing Organisms Based on the Oxidation Pattern of Different Phenolic Substrates. Int. J. Curr. Microbiol. Appl. Sci. 2016;5:127–137. doi: 10.20546/ijcmas.2016.505.014. DOI

Sugiura W, Yoda T, Matsuba T, Tanaka Y, Suzuki Y. Expression and characterization of the genes encoding azoreductases from Bacillus subtilis and Geobacillus stearothermophilus. Biosci. Biotechnol. Biochem. 2006;70:1655–65. doi: 10.1271/bbb.60014. PubMed DOI

Wang W, et al. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase. Microb. Cell Fact. 2012;11:75. doi: 10.1186/1475-2859-11-75. PubMed DOI PMC

Ooi T, Shibata T, Matsumoto K, Kinoshita S, Taguchi S. Comparative Enzymatic Analysis of Azoreductases from Bacillus sp. B29. Biosci. Biotechnol. Biochem. 2009;73:1209–1211. doi: 10.1271/bbb.80872. PubMed DOI

Kiiskinen LL, Rättö M, Kruus K. Screening for novel laccase-producing microbes. J. Appl. Microbiol. 2004;97:640–646. doi: 10.1111/j.1365-2672.2004.02348.x. PubMed DOI

Mayer AM, Staples RC. Laccase: new functions for an old enzyme. Phytochemistry. 2002;60:551–565. doi: 10.1016/S0031-9422(02)00171-1. PubMed DOI

Kumar VV, Kirupha SD, Periyaraman P. Screening and induction of laccase activity in fungal species and its application in dye decolorization. African J. Miicrobiology Res. 2011;5:1261–1267. doi: 10.5897/AJMR10.894. DOI

Chen H, Hopper SL, Cerniglia CE. Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology. 2005;151:1433–41. doi: 10.1099/mic.0.27805-0. PubMed DOI PMC

Colpa DI, Fraaije MW, van Bloois E. DyP-type peroxidases: a promising and versatile class of enzymes. J. Ind. Microbiol. Biotechnol. 2014;41:1–7. doi: 10.1007/s10295-013-1371-6. PubMed DOI

Franciscon E, Grossman MJ, Paschoal JAR, Reyes FGR, Durrant LR. Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. Springerplus. 2012;1:37. doi: 10.1186/2193-1801-1-37. PubMed DOI PMC

Okino-Delgado, C. H., Zanutto-Elgui, M. R., do Prado, D. Z., Pereira, M. S. & Fleuri, L. F. Enzymatic Bioremediation: Current Status, Challenges of Obtaining Process, and Applications. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, 10, 79–101. Springer, Singapore. (2019)

Vincent, J. M. In A Manual for the Practical Study of the Root-Nodule Bacteria 1–13 (1970).

Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95–98.

Lim SH, Lee YH, Kang HW. Efficient recovery of lignocellulolytic enzymes of spent mushroom compost from oyster mushrooms, Pleurotus spp., and potential use in dye decolorization. Mycobiology. 2013;41:214–220. doi: 10.5941/MYCO.2013.41.4.214. PubMed DOI PMC

Betts WB, King JE. Oxidative coupling of 2,6-dimethoxyphenol by fungi and bacteria. Mycol. Res. 1991;95:526–530. doi: 10.1016/S0953-7562(09)80063-4. DOI

Solano F, Lucas-Elío P, López-Serrano D, Fernández E, Sanchez-Amat A. Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol. Lett. 2001;204:175–181. doi: 10.1111/j.1574-6968.2001.tb10882.x. PubMed DOI

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–829. doi: 10.1101/gr.074492.107. PubMed DOI PMC

Aziz RK, et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics. 2008;9:75. doi: 10.1186/1471-2164-9-75. PubMed DOI PMC

Overbeek R, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) Nucleic Acids Res. 2014;42:D206–D214. doi: 10.1093/nar/gkt1226. PubMed DOI PMC

Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016;428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...