• This record comes from PubMed

The Effect of Processing Route on Properties of HfNbTaTiZr High Entropy Alloy

. 2019 Dec 03 ; 12 (23) : . [epub] 20191203

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
17-17016S GAČR

High entropy alloys (HEA) have been one of the most attractive groups of materials for researchers in the last several years. Since HEAs are potential candidates for many (e.g., refractory, cryogenic, medical) applications, their properties are studied intensively. The most frequent method of HEA synthesis is arc or induction melting. Powder metallurgy is a perspective technique of alloy synthesis and therefore in this work the possibilities of synthesis of HfNbTaTiZr HEA from powders were studied. Blended elemental powders were sintered, hot isostatically pressed, and subsequently swaged using a special technique of swaging where the sample is enveloped by a titanium alloy. This method does not result in a full density alloy due to cracking during swaging. Spark plasma sintering (SPS) of mechanically alloyed powders resulted in a fully dense but brittle specimen. The most promising result was obtained by SPS treatment of gas atomized powder with low oxygen content. The microstructure of HfNbTaTiZr specimen prepared this way can be refined by high pressure torsion deformation resulting in a high hardness of 410 HV10 and very fine microstructure with grain size well below 500 nm.

See more in PubMed

Gorsse S., Miracle D.B., Senkov O.N. Mapping the world of complex concentrated alloys. Acta Mater. 2017;135:177–187. doi: 10.1016/j.actamat.2017.06.027. DOI

Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081. DOI

Lu Z.P., Wang H., Chen M.W., Baker I., Yeh J.W., Liu C.T., Nieh T.G. An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics. 2015;66:67–76. doi: 10.1016/j.intermet.2015.06.021. DOI

Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. High-entropy alloy: Challenges and prospects. Mater. Today. 2016;19:349–362. doi: 10.1016/j.mattod.2015.11.026. DOI

Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001. DOI

Yeh B.J., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004;6:299–303. doi: 10.1002/adem.200300567. DOI

Cantor B., Chang I.T.H., Knight P., Vincent A.J.N. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004;375–377:213–218. doi: 10.1016/j.msea.2003.10.257. DOI

Fuerbacher M., Heidelmann M., Carsten T. Hexagonal High-Entropy Alloys. Mater. Res. Lett. 2014;3:1–9. doi: 10.1080/21663831.2014.951493. DOI

Yusenko K.V., Riva S., Carvalho P.A., Yusenko M.V., Arnaboldi S., Suknikh A.S., Hanfland M., Gromilov S.A. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 2017;138:22–27. doi: 10.1016/j.scriptamat.2017.05.022. DOI

Sheikh S., Shafeie S., Hu Q., Ahlstrom J., Persson C., Veselý J., Zýka J., Klement U., Guo S. Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 2016;120:164902. doi: 10.1063/1.4966659. DOI

Couzinié J., Dirras G. Body-centered cubic high-entropy alloys: From processing to underlying deformation mechanisms. Mater. Charact. 2019;147:533–544. doi: 10.1016/j.matchar.2018.07.015. DOI

Li Z., Pradeep K.G., Deng Y., Raabe D., Tasan C.C. Metastable high—Entropy dual—Phase alloys overcome the strength—Ductility trade-off. Nature. 2016;534:227–230. doi: 10.1038/nature17981. PubMed DOI

Wang L., Fu C., Wu Y., Wang Q., Hui X., Wang Y. Formation and toughening of metastable phases in TiZrHfAlNb medium entropy alloys. Mater. Sci. Eng. A. 2019;748:441–452. doi: 10.1016/j.msea.2018.12.033. DOI

Wang D., Lu X., Wan D., Li Z., Barnoush A. In-situ observation of martensitic transformation in an interstitial metastable high-entropy alloy during cathodic hydrogen charging. Scr. Mater. 2019;173:56–60. doi: 10.1016/j.scriptamat.2019.07.042. DOI

Čapek J., Kyncl J., Kolařík K., Beránek L., Pitrmuc Z., Medřický J., Pala Z. Grinding of Inconel 713 superalloy for gas turbines Grinding of Inconel 713 Superalloy for Gas Turbines. Manuf. Technol. 2016;16:38–45.

Praveen S., Kim H.S. High-Entropy Alloys: Potential Candidates for High-Temperature Applications—An Overview. Adv. Eng. Mater. 2018;20:1700645. doi: 10.1002/adem.201700645. DOI

Couzinié J., Senkov O.N., Miracle D.B., Dirras G. Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys. Data Br. 2018;21:1622–1641. doi: 10.1016/j.dib.2018.10.071. PubMed DOI PMC

Senkov O.N., Scott J.M., Senkova S.V., Maisenkothen F., Micracle D.B., Woodward C.F. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 2012;47:4062–4074. doi: 10.1007/s10853-012-6260-2. DOI

Biesiekierski A., Wang J., Abdel-Hady Gepreel M., Wen C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8:1661–1669. doi: 10.1016/j.actbio.2012.01.018. PubMed DOI

Donato T.A.G., Almeida L.H., Nogueira R.A., Niemeyer T.C., Grandini C.R., Caram R., Schneider S.G., Santos A.R., Jr. Cytotoxicity study of some Ti alloys used as biomaterial. Mater. Sci. Eng. C. 2009;29:1365–1369. doi: 10.1016/j.msec.2008.10.021. DOI

Eisenbarth E., Velten D., Müller M., Thull R., Breme J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials. 2004;25:5705–5713. doi: 10.1016/j.biomaterials.2004.01.021. PubMed DOI

Senkov O.N., Semiatin S.L. Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloys Compd. 2015;649:1110–1123. doi: 10.1016/j.jallcom.2015.07.209. DOI

Maiti S., Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 2016;106:87–97. doi: 10.1016/j.actamat.2016.01.018. DOI

Juan C.C., Tsai M.H., Tsai C.W., Lin C.M., Wang W.R., Yang C.C., Chen S.K., Lin S.J., Yeh J.W. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics. 2015;62:76–83. doi: 10.1016/j.intermet.2015.03.013. DOI

Chen S., Tseng K.K., Tong Y., Li W., Tsai C.W., Yeh J.W., Liaw P.K. Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy. J. Alloys Compd. 2019;795:19–26. doi: 10.1016/j.jallcom.2019.04.291. DOI

Senkov O.N., Pilchak A.L., Semiatin S.L. Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy. Metall. Mater. Trans. A. 2018;49:2876–2892. doi: 10.1007/s11661-018-4646-8. DOI

Lukac F., Dudr M., Mušálek R., Klečka J., Cinert J., Čížek J., Chráska T., Čížek J., Melikhova O., Kuriplach J., et al. Spark plasma sintering of gas atomized high-entropy alloy HfNbTaTiZr. J. Mater. Res. 2018;33:3247–3257. doi: 10.1557/jmr.2018.320. DOI

Kang B., Lee J., Jin H., Hyung S. Ultra-high strength WNbMoTaV high-entropy alloys with fi ne grain structure fabricated by powder metallurgical process. Mater. Sci. Eng. A. 2018;712:616–624. doi: 10.1016/j.msea.2017.12.021. DOI

Cao Y., Liu Y., Liu B., Zhang W. Precipitation behavior during hot deformation of powder metallurgy Ti-Nb-Ta-Zr-Al high entropy alloys. Intermetallics. 2018;100:95–103. doi: 10.1016/j.intermet.2018.06.007. DOI

Portnoi V.K., Leonov A.V., Gusakov M.S., Logachev I.A., Fedotov S.A. Preparation of High-Temperature Multicomponent Alloys by Mechanochemical Synthesis from Refractory Elements. Inorg. Mater. 2019;55:219–223. doi: 10.1134/S0020168519010084. DOI

Wang S., Xu J. (TiZrNbTa)—Mo high-entropy alloys: Dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening. Intermetallics. 2018;95:59–72. doi: 10.1016/j.intermet.2018.01.017. DOI

Lewis G. Properties of open-cell porous metals and alloys for orthopaedic applications. J. Mater. Sci. Mater. Med. 2013;24:2293–2325. doi: 10.1007/s10856-013-4998-y. PubMed DOI

Guo W., Liu B., Liu Y., Li T., Fu A., Fang Q., Nie Y. Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy. J. Alloys Compd. 2019;776:428–436. doi: 10.1016/j.jallcom.2018.10.230. DOI

Neslušan M., Minárik P., Čilliková M., Kolařík K., Rubešová K. Barkhausen noise emission in tool steel X210Cr12 after semi-solid processing. Mater. Charact. 2019;157:109981. doi: 10.1016/j.matchar.2019.109891. DOI

Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI

Bečvář F., Čížek J., Procházka I., Janotová J. The asset of ultra-fast digitizers for positron-lifetime spectroscopy. Nucl. Instrum. Methods Phys. Res. A. 2005;539:372–385. doi: 10.1016/j.nima.2004.09.031. DOI

West R.N. Positron studies of condensed matter. Adv. Phys. 1973;22:263–383. doi: 10.1080/00018737300101299. DOI

Čížek J., Haušild P., Cieslar M., Melikhova O., Vlasák T., Janeček M., Král R., Harcuba P., Lukáč F., Zýka J., et al. Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation. J. Alloys Compd. 2018;768:924–937. doi: 10.1016/j.jallcom.2018.07.319. DOI

Couzinie J.P., Dirras G., Perriere L., Chauveau T., Leroy E., Champion Y., Guillot I. Microstructure of a near-equimolar refractory high-entropy alloy. Mater. Lett. 2014;126:285–287. doi: 10.1016/j.matlet.2014.04.062. DOI

Cichy H., Fromm E. Oxidation kinetics of metal films at 300 K studied by the piezoelectric quartz crystal microbalance technique. Thin Solid Films. 1991;195:147–158. doi: 10.1016/0040-6090(91)90267-2. DOI

Málek J., Zýka J., Lukáč F., Čížek J., Kunčická L., Kocich R. Microstructure and mechanical properties of sintered and heat treated HfNbTaTiZr high entropy alloy. Metals. 2019 in press.

Piluso P., Ferrier M., Chaput C., Claus J., Bonnet J. Hafnium dioxide for porous and dense high-temperature refractories (2600 °C) J. Eur. Ceram. Soc. 2009;29:961–968. doi: 10.1016/j.jeurceramsoc.2008.07.036. DOI

Durov A.V. Wetting oF Hafnium Dioxide by Pure Metals. Powder Metall. Met. Ceram. 2011;50:552–556. doi: 10.1007/s11106-011-9358-1. DOI

Lei Z., Liu X., Wu Y., Wang H., Jiang S., Wang S., Hui X., Wu Y., Gault B., Kontis P., et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature. 2018;563:546–550. doi: 10.1038/s41586-018-0685-y. PubMed DOI

Juan C.C., Tsai N.H., Tsai C.W., Hsu W.L., Lin C.M., Chen S.K., Lin S.J., Yeh J.W. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining. Mater. Lett. 2016;184:200–203. doi: 10.1016/j.matlet.2016.08.060. DOI

Schuh B., Volker B., Todt J., Schnell N., Perriere L., Li J., Couzinie J.P., Hohenwarter A. Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties. Acta Mater. 2018;142:201–212. doi: 10.1016/j.actamat.2017.09.035. DOI

Chen S.Y., Tong Y., Tseng K.K., Yeh J.W., Poplawsky J.D., Wen J.G., Gao M.C., Kim G., Chen W., Ren Y., et al. Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures. Scr. Mater. 2019;158:50–56. doi: 10.1016/j.scriptamat.2018.08.032. DOI

Yao J.Q., Liu X.W., Gao N., Jiang Q.H., Li N., Liu G., Zhang W.B., Fan Z.T. Phase stability of a ductile single-phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloy. Intermetallics. 2018;98:79–88. doi: 10.1016/j.intermet.2018.04.023. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...