Assessment of Retained Austenite in Fine Grained Inductive Heat Treated Spring Steel
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FSI-S-19-6014
Research of perspective production technologies
PubMed
31817494
PubMed Central
PMC6947329
DOI
10.3390/ma12244063
PII: ma12244063
Knihovny.cz E-zdroje
- Klíčová slova
- Mössbauer spectroscopy, heat treatment, neutron diffraction, retained austenite, spring steel,
- Publikační typ
- časopisecké články MeSH
Advanced thermomechanical hot rolling is becoming a widely used technology for the production of fine-grained spring steel. Different rapid phase transformations during the inductive heat treatment of such steel causes the inhomogeneous mixture of martensitic, bainitic, and austenitic phases that affects the service properties of the steel. An important task is to assess the amount of retained austenite and its distribution over the cross-section of the inductive quenched and tempered wire in order to evaluate the mechanical properties of the material. Three different analytical methods were used for the comparative quantitative assessment of the amount of retained austenite in both the core and rim areas of the sample cross-section: neutron diffraction-for the bulk of the material, Mössbauer spectroscopy-for measurement in a surface layer, and the metallographic investigations carried by the EBSD. The methods confirmed the excessive amount of retained austenite in the core area that could negatively affect the plasticity of the material.
European Spallation Source ERIC Box 176 22100 Lund Sweden
Institute of Physics of Materials Czech Academy of Sciences Zizkova 22 61662 Brno Czech Republic
Nuclear Physics Institute of the CAS Řež 130 25068 Řež Czech Republic
Zobrazit více v PubMed
Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Design. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI
Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI
Naizabekov A.B., Andreyachshenko V.A., Kocich R. Study of deformation behavior, structure and mechanical properties of the AlSiMnFe alloy during ECAP-PBP. Micron. 2013;44:210–217. doi: 10.1016/j.micron.2012.06.011. PubMed DOI
Bobeth S., Matthies E. New opportunities for electric car adoption: the case of range myths, new forms of subsidies, and social norms. Energy Effic. 2018;11:1763–1782. doi: 10.1007/s12053-017-9586-4. DOI
Kocich R., Macháčková A., Kursab M. FEA of plastic flow in AZ63 alloy during ECAP process. Acta. Phys. Pol. A. 2012;122:581–587. doi: 10.12693/APhysPolA.122.581. DOI
Kunčická L., Kocich R., Ryukhtin V., Cullen J.C.T., Lavery N.P. Study of structure of naturally aged aluminium after twist channel angular pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI
Kocich R., Macháčková A., Fojtík F. Comparison of strain and stress conditions in conventional and ARB rolling processes. Int. J. Mech. Sci. 2012;64:54–61. doi: 10.1016/j.ijmecsci.2012.08.003. DOI
Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A. 2017;704:25–31. doi: 10.1016/j.msea.2017.07.096. DOI
Kocich R., Kunčická L., Dohnalík D., Macháčková A., Šofer M. Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations. Int. J. Refract. Met. Hard Mater. 2016;61:264–272. doi: 10.1016/j.ijrmhm.2016.10.005. DOI
Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites. Mater. Design. 2017;123:137–146. doi: 10.1016/j.matdes.2017.03.048. DOI
Varshney A., Sangal S., Kundu S., Mondal K. Super strong and highly ductile low alloy multiphase steels consisting of bainite, ferrite and retained austenite. Mater. Design. 2016;95:75–88. doi: 10.1016/j.matdes.2016.01.078. DOI
Hofer C., Winkelhofer F., Clemens H., Primig S. Morphology change of retained austenite during austempering of carbide-free bainitic steel. Mater. Sci. Eng. A. 2016;664:236–246. doi: 10.1016/j.msea.2016.04.005. DOI
Paravicini Bagliani E., Santofimia M.J., Zhao L., Sietsma J., Anelli E. Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel. Mater. Sci. Eng. A. 2013;559:486–495. doi: 10.1016/j.msea.2012.08.130. DOI
De Diego-Calderón I., Sabirov I., Molina-Aldareguia J.M., Föjer C., Thiessen R., Petrov R.H. Microstructural design in quenched and partitioned (Q&P) steels to improve their fracture properties. Mater. Sci. Eng. A. 2016;657:136–146.
Gao G., Zhang B., Cheng C., Zhao P., Zhang H., Bai B. Very high cycle fatigue behaviors of bainite/martensite multiphase steel treated by quenching-partitioning-tempering process. Int. J. Fatigue. 2016;92:203–210. doi: 10.1016/j.ijfatigue.2016.06.025. DOI
Luo P., Gao G., Zhang H., Tan Z., Misra R.D.K., Bai B. On structure-property relationship in nanostructured bainitic steel subjected to the quenching and partitioning process. Mater. Sci. Eng. A. 2016;661:1–8. doi: 10.1016/j.msea.2016.03.006. DOI
Guia X., Gaoa G., Guoa H., Zhaoa F., Tana Z., Bai B. Effect of bainitic transformation during BQ & P process on the mechanical properties in an ultrahigh strength Mn-Si-Cr-C steel. Mater. Sci. Eng. A. 2017;684:598–605.
HajyAkbary F., Sietsma J., Miyamoto G., Kamikawa N., Petrov R.H., Furuhara T., Santofimia M.J. Analysis of the mechanical behavior of a 0.3C-1.6Si-3.5Mn (wt%) quenching and partitioning steel. Mater. Sci. Eng. A. 2016;667:505–514. doi: 10.1016/j.msea.2016.09.087. DOI
Hao Q., Qin S., Liu Y., Zuo X., Chen N., Huang W., Rong Y. Effect of retained austenite on the dynamic tensile behavior of a novel quenching-partitioning-tempering martensitic steel. Mater. Sci. Eng. A. 2016;662:16–25. doi: 10.1016/j.msea.2016.03.007. DOI
Horn R.M., Ritchie R.O. Mechanism of tempered martensite embrittlement in low alloy steels. Metal. Trans. A. 1978;9:1039–1053. doi: 10.1007/BF02652208. DOI
Lan H.F., Du L.X., Li Q., Qiu C.L., Li J.P., Misra R.D.K. Improvement of strength-toughness combination in austempered low carbon bainitic steel: The key role of refining prior austenite grain size. J. Alloy. Compd. 2017;710:702–710. doi: 10.1016/j.jallcom.2017.03.024. DOI
DeArdo A.J., Garcia C.I., Palmiere E.J. ASM Handbook, Vol 4: Heat Treating. 3rd ed. ASM International; Geauga County, OH, USA: 1991. Thermomechanical Processing of Steels; pp. 237–255.
Zahng C., Liu Y., Jiang C., Xiao J. Effect of niobium and vanadium on hydrogen-induced delayed fracture in high strength spring steel. J. Iron Steel Res. Int. 2011;18:49–53. doi: 10.1016/S1006-706X(11)60077-0. DOI
Yu Q., Sun Y. Abnormal growth of austenite grain of low-carbon steel. Mater. Sci. Eng. A. 2006;420:34–38. doi: 10.1016/j.msea.2006.01.027. DOI
Yang G., Sun X., Li Z., Li X., Yong O. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel. Mater. Design. 2013;50:102–107. doi: 10.1016/j.matdes.2013.03.019. DOI
Moropoulos S., Karagiannis S., Ridley N. The effect of austenitising temperature on prior austenite grain size in low-alloyed steel. Mater. Sci. Eng. A. 2008;483–484:735–739. doi: 10.1016/j.msea.2006.11.172. DOI
Muszka K., Hodgson P.D., Majta J. Study of the effect of grain size on the dynamic mechanical properties of microalloyed steels. Mater. Sci. Eng. A. 2009;500:25–33. doi: 10.1016/j.msea.2008.09.069. DOI
Canale L.C.F., Totten G.E. Steel heat treatment failures due to quenching. In: Canale L.C.F., Mesquita R.A., Totten G.E., editors. Failure Analysis of Heat Treated Components. 1st ed. ASM International; Geauga County, OH, USA: 2008. pp. 255–284.
Kobasko N., Aronov M., Powell J., Vanas J. Intensive Quenching of Steel Parts: Equipment and Method; Proceedings of the 7th IASME/WSEAS International Conference on Health Transfer, Thermal Engineering and Environment; Moscow, Russia. 20–22 August 2009.
Neutron Diffraction Experiments on MEREDIT Instrument. [(accessed on 16 October 2019)]; Available online: http://www.xray.cz/xray/csca/kol2010/abst/beran.htm.
Mikula P. Past and Present Status of Neutron Scattering at the Research Reactor in Řež. Mater. Struct. 2006;13:51–62.
Rodrıguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B. 1993;192:55–69. doi: 10.1016/0921-4526(93)90108-I. DOI
Greenwood N.N., Gibb T.C. Mössbauer Spectroscopy. Springer; Amsterdam, The Netherlands: 1971. pp. 1–76.
Vértes A., Korecz L., Burger K. Mössbauer Spectroscopy. Elsevier Scientific Pub. Co.; Amsterdam, The Netherlands: 1979. pp. 34–52.
Gütlich P., Bill E., Trautwein A.X. Mössbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications. Springer; Berlin, Germany: 2011. pp. 73–135.
Danon J. Lectures on the Mössbauer Effect. Gordon and Breach; New York, NY, USA: 1968. pp. 66–104.
Pechousek J., Kouril L., Novak P., Kaslik J., Navarik J. Austenitemeter – spectrometer for rapid determination of residual austenite in steels. Measurement. 2019;131:671–676. doi: 10.1016/j.measurement.2018.09.028. DOI
Klencsár Z., Kuzmann E., Vértes A. User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. 1996;210:105–118. doi: 10.1007/BF02055410. DOI
Vatavuk J., Canale L.C.F. Steel failures due to tempering and isothermal heat treatment. In: Canale L.C.F., Mesquita R.A., Totten G.E., editors. Failure Analysis of Heat Treated Components. 1st ed. ASM International; Geauga County, OH, USA: 2008. pp. 285–309.
Yu D., Chen Y., Huang L., An K. Tracing phase transformation and lattice evolution in a TRIP sheet steel under high-temperature annealing by real-time in situ neutron diffraction. Crystals. 2018;131:360. doi: 10.3390/cryst8090360. DOI
Harjo S., Kawasaki T., Gong W., Aizawa K. Dislocation characteristics in lath martensitic steel by neutron diffraction. J. Phys. Conf. Ser. 2016;476:1–7. doi: 10.1088/1742-6596/746/1/012046. DOI
Varga I., Kuzmann E., Vértes A. Kinetics of a-c phase transition of Fe-12Cr-4Ni Alloy aged between 500–650 °C. Hyperfine Interact. 1998;112:169–174. doi: 10.1023/A:1011073602566. DOI
Schwartzendruber L.J., Bennett L.H., Schoefer E.A., Delong W.T., Campbell H.C. Mössbauer-effect examination of ferrite in stainless steel welds and castings. Welding Res. Suppl. 1974;53:1–12.
Jha B.K., Mishra N.S. Microstructural evolution during tempering of a multiphase steel containing retained austenite. Mater. Sci. Eng. A. 1999;263:42–55. doi: 10.1016/S0921-5093(98)01081-8. DOI
Besoky J.I., Danon C.A., Ramos C.P. Retained austenite phase detected by Mössbauer spectroscopy in ASTM A335 P91 steel submitted to continuous cooling cycles. J. Mater. Res. Technol. 2019;8:1888–1896. doi: 10.1016/j.jmrt.2019.01.005. DOI
Pierce D.T., Coughlin D.R., Williamson D.L., Clarke K.D., Clarke A.J., Speer J.G., De Moor E. Characterization of transition carbides in quench and partitioned steel microstructures by Mössbauer spectroscopy and complementary techniques. Acta. Mater. 2015;90:417–430. doi: 10.1016/j.actamat.2015.01.024. DOI
Uwakweh O.N.C., Bauer J.P., Génin J.-M.R. Mössbauer Study of the Distribution of Carbon Interstitials in Iron Alloys and the Isochronal Kinetics of the Aging of Martensite: The Clustering-Ordering Synergy. Metal. Trans. A. 1900;21:589–602. doi: 10.1007/BF02671931. DOI
Special Issue: Mechanical Properties in Progressive Mechanically Processed Metallic Materials