• This record comes from PubMed

Ecophysiological Features of Polar Soil Unicellular Microalgae1

. 2020 Apr ; 56 (2) : 481-495. [epub] 20200122

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Due to their ecological, physiological, and molecular adaptations to low and varying temperatures, as well as varying seasonal irradiances, polar non-marine eukaryotic microalgae could be suitable for low-temperature biotechnology. Adaptations include the synthesis of compounds from different metabolic pathways that protect them against stress. Production of biological compounds and various biotechnological applications, for instance, water treatment technology, are of interest to humans. To select prospective strains for future low-temperature biotechnology in polar regions, temperature and irradiance of growth requirements (Q10 and Ea of 10 polar soil unicellular strains) were evaluated. In terms of temperature, three groups of strains were recognized: (i) cold-preferring where temperature optima ranged between 10.1 and 18.4°C, growth rate 0.252 and 0.344 · d-1 , (ii) cold- and warm-tolerating with optima above 10°C and growth rate 0.162-0.341 · d-1 , and (iii) warm-preferring temperatures above 20°C and growth rate 0.249-0.357 · d-1 . Their light requirements were low. Mean values Q10 for specific growth rate ranged from 0.7 to 3.1. The lowest Ea values were observed on cold-preferring and the highest in the warm-preferring strains. One strain from each temperature group was selected for PN and RD measurements. The PN :RD ratio of the warm-preferring strains was less affected by temperature similarly as Q10 and Ea. For future biotechnological applications, the strains with broad temperature tolerance (i.e., the group of cold- and warm-tolerating and warm-preferring strains) will be most useful.

See more in PubMed

Adamec, L. 1997. Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa. Aquat. Bot. 59:297-306.

Adamec, L. & Ondok, J. P. 1992. Water alkalisation due to photosynthesis of aquatic plants. The dependence on total alkalinity. Aquat. Bot. 43:93-8.

Ahmed, S. & Kenner, R. 1977. A study of in vitro electron transport activity in marine phytoplankton as a function of temperature. J. Phycol. 13:116-21.

Allen, E. & Spence, D. 1981. The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters. New Phytol. 87:269-83.

Andrade, L., Andrade, C., Dias, M., Nascimento, C. & Mendes, M. 2018. Chlorella and Spirulina microalgae as sources of functional foods. MOJ Food Process Technol. 6:45-58.

Arun, N., Gupta, S. & Singh, D. 2012. Antimicrobial and antioxidant property of commonly found microalgae Spirulina platensis, Nostoc muscorum and Chlorella pyrenoidosa against some pathogenic bacteria and fungi. Int. J. Pharm. Sci. Res. 3:4866.

Azcón-Bieto, J. & Osmond, C. B. 1983. Relationship between photosynthesis and respiration the effect of carbohydrate status on the rate of CO2 production by respiration in darkened and illuminated wheat leaves. Plant Physiol. 71:574-81.

Barboríková, J., Šutovská, M., Kazimierová, I., Jošková, M., Fraňová, S., Kopecký, J. & Capek, P. 2019. Extracellular polysaccharide produced by Chlorella vulgaris - chemical characterization and anti-asthmatic profile. Int. J. Biol. Macromol. 135:1-11.

Barreiro, D. L., Zamalloa, C., Boon, N., Vyverman, W., Ronsse, F., Brilman, W. & Prins, W. 2013. Influence of strain-specific parameters on hydrothermal liquefaction of microalgae. Bioresource Technol. 146:463-71.

Berges, J. A., Varela, D. E. & Harrison, P. J. 2002. Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Mar. Ecol. Prog. Ser. 225:139-46.

Boenigk, J., Pfandl, K., Stadler, P. & Chatzinotas, A. 2005. High diversity of the ‘Spumella-like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ. Microbiol. 7:685-97.

Bottos, E. M., Woo, A. C., Zawar-Reza, P., Pointing, S. B. & Cary, S. C. 2014. Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microb. Ecol. 67:120-8.

Cadoret, J. P., Garnier, M. & Saint-Jean, B. 2012. Microalgae, functional genomics and biotechnology. Adv. Bot. Res. 64:285-341.

Callaghan, T. V., Björn, L. O., Chernov, Y, Chapin III, F. S., Christensen, T. R., Huntley, B., Ims, R. A. et al. 2004. Climate change and UV-B impacts on Arctic tundra and polar desert ecosystems: Responses to projected changes in climate and UV-B at the species level. Ambio 33:418-35.

Cao, K., He, M., Yang, W., Chen, B., Luo, W., Zou, S. & Wang, C. 2016. The eurythermal adaptivity and temperature tolerance of a newly isolated psychrotolerant Arctic Chlorella sp. J. Ap. Phycol. 28:877-88.

Chen, Y. X., Liu, X. Y., Xiao, Z., Huang, Y. F. & Liu, B. 2016. Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations. Int. J. Biol. Macromol. 91:505-9.

Chong, G. L., Chu, W. L., Othman, R. Y. & Phang, S. M. 2011. Differential gene expression of an Antarctic Chlorella in response to temperature stress. Polar Biol. 34:637-45.

Dal Grande, F., Beck, A., Cornejo, C., Singh, G., Cheenacharoen, S., Nelsen, M. P. & Scheidegger, C. 2014. Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. New Phytol. 202:455-70.

Darienko, T., Gustavs, L. & Pröschold, T. 2016. Species concept and nomenclatural changes within the genera Elliptochloris and Pseudochlorella (Trebouxiophyceae) based on an integrative approach. J. Phycol. 52:1125-45.

Davison, I. R. 1991. Environmental effects on algal photosynthesis: temperature. J. Phycol. 27:2-8.

De Wever, A., Leliaert, F., Verleyen, E., Vanormelingen, P., Van der Gucht, K., Hodgson, D. A., Sabbe, K. & Vyverman, W. 2009. Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. P. Roy. Soc. B-Biol. Sci. 276:3591-9.

Dell, I. 2015. Dell Statistica (data analysis software system), version 13. software.dell.com

Descolas-Gros, C. & de Billy, G. 1987. Temperature adaptation of RuBP carboxylase: kinetic properties in marine Antarctic diatoms. J. Exp. Mar. Biol. Ecol. 108:147-58.

Dewi, I. C., Falaise, C., Hellio, C., Bourgougnon, N. & Mouget, J.-L. 2018. Chapter 12 - Anticancer, antiviral, antibacterial, and antifungal properties in microalgae. In In Levine, I. A. & Fleurence, J. [Eds.] Microalgae in Health and Disease Prevention. Academic Press, London, San Diego, Cambridge, Oxford, pp. 235-61.

Di Martino Rigano, V., Vona, V., Lobosco, O., Carillo, P., Lunn, J. E., Carfagna, S., Esposito, S., Caiazzo, M. & Rigano, C. 2006. Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant Cell Environ. 29:1400-9.

Ejike, C. E., Collins, S. A., Balasuriya, N., Swanson, A. K., Mason, B. & Udenigwe, C. C. 2017. Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends Food Sci. Tech. 59:30-6.

Elster, J. 1999. Algal versatility in various extreme environments. In Seckbach, J. [Ed.] Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 215-27.

Elster, J. 2002. Ecological classification of terrestrial algal communities in polar environments. In Beyer, L. & Bötler, M. [Eds.] Geoecology of Antarctic Ice-free Coastal Lanscapes. Springer-Verlag, Berlin Heidelberg, pp. 303-26.

Elster, J. & Benson, E. E. 2004. Life in the polar terrestrial environment with a focus on algae and cyanobacteria. In Fuller, B. J., Lane, N. & Benson, E. E. [Eds.] Life in the Frozen State. CRC Press, Boca Raton, pp. 111-50.

Elster, J., Komárek, J. & Svoboda, J. 1995. Algal communities of polar wetlands. Scripta Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis 24:13-24.

Elster, J., Lukavský, J., Harding, K., Benson, E. E. & Day, J. G. 2008. Development of the encapsulation/dehydration protocol to cryopreserve polar microalgae held at the Czech Republic Academy of Science Institute of Botany. Cryo-Lett. 29:27-8.

Elster, J., Lukešová, A., Svoboda, J., Kopecký, J. & Kanda, H. 1999. Diversity and abundance of soil algae in the polar desert, Sverdrup Pass, central Ellesmere Island. Polar Rec. 35:231-54.

Eppley, R. W. 1972. Temperature and phytoplankton growth in the sea. Fish B-NOAA 70:1063-85.

Falkowski, P. G. 1992. Molecular ecology of phytoplankton photosynthesis. In Falkowski, P. G., Woodhead, A. D. & Avril, D. [Eds.] Primary Productivity and Biogeochemical Cycles in the Sea. Springer, Boston, MA, pp. 47-67.

Fermani, P., Mataloni, G. & Van de Vijver, B. 2007. Soil microalgal communities on an Antarctic active volcano (Deception Island, South Shetlands). Polar Biol. 30:1381-93.

Finlay, B. J. 2002. Global dispersal of free-living microbial eukaryote species. Science 296:1061-3.

Finlay, B. J. & Fenchel, T. 2004. Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist 155:237-44.

Grubbs, F. E. 1969. Procedures for detecting outlying observations in samples. Technometrics 11:1-21.

Han, B. P., Virtanen, M., Koponen, J. & Straškraba, M. 2000. Effect of photoinhibition on algal photosynthesis: a dynamic model. J. Plankton Res. 22:865-85.

Helder, R. J. 1988. A quantitative approach to the inorganic carbon system in aqueous media used in biological research: dilute solutions isolated from the atmosphere. Plant Cell Environ. 11:211-30.

Hellweger, F. L., van Sebille, E. & Fredrick, N. D. 2014. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science 345:1346-9.

Herbold, C. W., Lee, C. K., McDonald, I. R. & Cary, S. C. 2014. Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica. Nat. Commun. 5:3875.

Hodač, L., Hallmann, C., Spitzer, K., Elster, J., Faßhauer, F., Brinkmann, N., Lepka, D., Diwan, V. & Friedl, T. 2016. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiol. Ecol. 92:fiw122.

van't Hoff, J. H. 1884. E′tudes de dynamique chimique. Muller, Amsterdam, 242 pp.

Hu, H., Li, H. & Xu, X. 2008. Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia 47:28-34.

Huss, V. A., Frank, C., Hartmann, E. C., Hirmer, M., Kloboucek, A., Seidel, B. M., Wenzeler, P. & Kessler, E. 1999. Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J. Phycol. 35:587-98.

Iwamoto, H. 2004. Industrial production of microalgal cell-mass and secondary products - major industrial species Chlorella. In Richmond, A. [Ed.] Handbook of Microbial Culture, Biotechnology and Applied Phycology. Wiley-Blackwell, Oxford, pp. 255-63.

Karsten, U., Herburger, K. & Holzinger, A. 2016. Living in biological soil crust communities of African deserts-physiological traits of green algal Klebsormidium species (Streptophyta) to cope with desiccation, light and temperature gradients. J. Plant Physiol. 194:2-12.

Karsten, U. & Holzinger, A. 2012. Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb. Ecol. 63:51-63.

Karsten, U., Pröschold, T., Mikhailyuk, T. & Holzinger, A. 2013. Photosynthetic performance of different genotypes of the green alga Klebsormidium sp. (Streptophyta) isolated from biological soil crusts of the Alps. Algol. Stud. 142:45-62.

Kaštovská, K., Elster, J., Stibal, M. & Šantrůčková, H. 2005. Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb. Ecol. 50:396-407.

Kaštovská, K., Stibal, M., Šabacká, M., Černá, B., Šantrůčková, H. & Elster, J. 2007. Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biol. 30:277-87.

Kenny, P. & Flynn, K. J. 2017. Physiology limits commercially viable photoautotrophic production of microalgal biofuels. J. Ap. Phycol. 29:2713-27.

Kochkina, G., Ozerskaya, S., Ivanushkina, N., Chigineva, N., Vasilenko, O., Spirina, E. & Gilichinskii, D. 2014. Fungal diversity in the Antarctic active layer. Microbiology 83:94-101.

Kvíderová, J. 2010. Characterization of the community of snow algae and their photochemical performance in situ in the Giant Mountains, Czech Republic. Arct. Antarct. Alp. Res. 42:210-8.

Kvíderová, J. & Henley, W. J. 2005. The effect of ampicillin plus streptomycin on growth and photosynthesis of two halotolerant chlorophyte algae. J. Ap. Phycol. 17:301-7.

Kvíderová, J. & Lukavský, J. 2001. A new unit for crossed gradients of temperature and light. In Elster, J., Seckbach, J., Vincent, W. F. & Lhotský, O. [Eds.] Algae and Extreme Environments. Cramer, Stuttgart, pp. 541-50.

Kvíderová, J. & Lukavský, J. 2005. The comparison of ecological characteristics of Stichococcus (Chlorophyta) strains isolated from polar and temperate regions. Algol. Stud. 118:127-40.

Kvíderová, J., Shukla, S. P., Pushparaj, B. & Elster, J. 2017. Perspectives of low-temperature biomass production of polar microalgae and biotechnology expansion into high latitudes. In Margesin, R. [Ed.] Psychrophiles: From Biodiversity to Biotechnology. Springer, Cham, pp. 585-600.

Lang, I., Hodač, L., Friedl, T. & Feussner, I. 2011. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 11:124.

Langhans, T. M., Storm, C. & Schwabe, A. 2009. Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microb. Ecol. 58:394-407.

Lepka, D. 2007. Phylogenie Chlorella-ähnlicher Grünalgen von rDNA-Sequenzanalysen. Georg August Universität, Göttingen, 82 pp.

Li, W. K. W., Smith, J. C. & Platt, T. 1984. Temperature response of photosynthetic capacity and carboxylase activity in Arctic marine phytoplankton. Mar. Ecol. Prog. Ser. 237-43.

Lomas, M. & Glibert, P. 1999. Interactions between NH4+ and NO3− uptake and assimilation: comparison of diatoms and dinoflagellates at several growth temperatures. Mar. Biol. 133:541-51.

Machová, K., Elster, J. & Adamec, L. 2008. Xanthophyceaen assembleges during winter-spring flood: autecology and ecophysiology Tribonema fonticolum and T. monochloron. Hydrobiologia 600:155-68.

Morgan-Kiss, R. M., Ivanov, A. G., Modla, S., Czymek, K., Hüner, N. P. A., Priscu, J. C., Lisle, J. T. & Hanson, T. E. 2008. Identity and physiology of new psychrophilix eukaryotic green alga Chlorella sp. strain BI, isolated from transitory pond near Bratina Island, Antarctica. Extremophiles 12:701-11.

Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L. & Huner, N. P. A. 2006. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. R. 70:222-52.

Olivieri, G., Gargano, I., Andreozzi, R., Marotta, R., Marzocchella, A., Pinto, G. & Pollio, A. 2013. Effects of photobioreactors design and operating conditions on Stichococcus bacillaris biomass and biodiesel production. Biochem. Eng. J. 74:8-14.

Olivieri, G., Marzocchella, A., Andreozzi, R., Pinto, G. & Pollio, A. 2011. Biodiesel production from Stichococcus strains at laboratory scale. J. Chem. Technol. Biot. 86:776-83.

Pandey, K. D., Shukla, S. P., Shukla, N. P., Giri, D. D., Singh, J. S., Singh, P. & Kashyap, A. K. 2004. Cyanobacteria in Antarctica: Ecology, physiology and cold adaptation. Cell. Mol. Biol. 50:575-84.

Pechar, L. 1987. Use of acetone: methanol mixture for the extraction and spectrophotometric determination of chlorophyll-a in phytoplankton. Algol. Stud. 46:99-117.

Priscu, J. C. 1998. Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys. American Geophysical Union, Washington, DC, 369 pp.

Rai, L. C. & Gaur, J. P. 2001. Algal Adaptation to Environmental Stresses. Physiological, Biochemical and Molecular Mechanisms. Springer-Verlag, Berlin, Heidelberg, New York, 421 pp.

Ratkowsky, D., Olley, J., McMeekin, T. & Ball, A. 1982. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 149:1-5.

Raven, J. A. & Geider, R. J. 1988. Temperature and algal growth. New Phytol. 110:441-61.

Řídká, T., Peksa, O., Rai, H., Upreti, D. K. & Škaloud, P. 2014. Photobiont diversity in Indian Cladonia lichens, with special emphasis on the geographical patterns. In Rai, H. & Upreti, D. K. [Eds.] Terricolous Lichens in India Volume 1: Diversity Patterns and Distribution Ecology. Springer-Verlag, New York, pp. 53-71.

Rindi, F., Allali, H. A., Lam, D. W. & López-Bautista, J. M. 2009. An overview of the biodiversity and biogeography of terrestrial green algae. In Rescigno, V. & Malleta, S. [Eds.] Biodiversity Hotspots. Nova Science Publishers, Hauppauge, NY, pp. 105-22.

Rindi, F., Guiry, M. D. & Lo, J. M. 2008. Distribution, morphology, and phylogeny of Klebsormidium (Klebsormidiales, Charophyceae) in urban environments in Europe. J. Phycol. 44:1529-40.

Rivas, C., Navarro, N., Huovinen, P. & Gómez, I. 2016. Photosynthetic UV stress tolerance of the Antarctic snow alga Chlorella sp. modified by enhanced temperature? Rev. Chil. Hist. Nat. 89:7.

Rybalka, N., Andersen, R. A., Kostikov, I., Mohr, K. I., Massalski, A., Olech, M. & Friedl, T. 2009. Testing for endemism, genotypic diversity and species concepts in Antarctic terrestrial microalgae of the Tribonemataceae (Stramenopiles, Xanthophyceae). Environ. Microbiol. 11:554-65.

Ryšánek, D., Hrčková, K. & Škaloud, P. 2014. Global ubiquity and local endemism of free-living terrestrial protists: phylogeographic assessment of the streptophyte alga Klebsormidium. Environ. Microbiol. 17:689-98.

Samejima, H. & Myers, J. 1958. On the heterotrophic growth of Chlorella pyrenoidosa. J. Gen. Microbiol. 18:107-17.

Sand-Jensen, K. A. J. 1989. Environmental variables and their effect on photosynthesis of aquatic plant communities. Aquat. Bot. 34:5-25.

Shukla, S. P. & Kashyap, A. K. 1999. The thermal responses and activation energy of PSII nitrate uptake and nitrate reductase activities of two geographically different isolates of Anabaena. Cytobios 99:7-17.

Shukla, S. P., Kvíderová, J. & Elster, J. 2011. Nutrient requirements of polar Chlorella-like species. Czech Polar Reports 1:1-10.

Shukla, S. P., Kvíderová, J., Tříska, J. & Elster, J. 2013. Chlorella mirabilis as a potential species for biomass production in low-temperature environment. Front. Microbiol. 4:97.

Shukla, S. P., Mishra, A. K. & Kashyap, A. K. 1997a. Influence of low temperature and salinity stress on growth behaviour and pigment composition of Antarctic and tropical isolates of a diazotrophic cyanobacterium Anabaena. Indian J. Exp. Biol. 35:1224-8.

Shukla, S. P., Padney, K. D. & Kashyap, A. K. 1997b. Nitrogen fixation, ammonium transport and glutamine synthetase activity in an Antarctic cyanobacterium Anabaena sp.: Influence of temperature. J. Plant Physiol. 150:351-4.

Škaloud, P., Lukešová, A., Malavasi, V., Ryšánek, D., Hrčková, K. & Rindi, F. 2014. Molecular evidence for the polyphyletic origin of low pH adaptation in the genus Klebsormidium (Klebsormidiophyceae, Streptophyta). Plant Ecol. Evol. 147:333-45.

Škaloud, P., Steinová, J., Řídká, T., Vančurová, L. & Peksa, O. 2015. Assembling the challenging puzzle of algal biodiversity: species delimitation within the genus Asterochloris (Trebouxiophyceae, Chlorophyta). J. Phycol. 51:507-27.

Slocombe, S. P., Zhang, Q., Ross, M., Anderson, A., Thomas, N. J., Lapresa, Á., Rad-Menéndez, C., Campbell, C. N., Black, K. D. & Stanley, M. S. 2015. Unlocking nature's treasure-chest: screening for oleaginous algae. Sci. Rep. UK 5:9844.

Staub, R. 1961. Ernährungsphysiologisch-autökologische Untersuchungen an der planktonische Blaualge Ocillatoria rubescens DC. Schweis. Z. Hydrol. 23:82-198.

Stibal, M. & Elster, J. 2005. Growth and morphology variation as a response to changing environmental factors in two Arctic species Raphidonema (Trebouxiophyceae) from snow and soil. Polar Biol. 28:558-67.

Stibal, M., Elster, J., Šabacká, M. & Kaštovská, K. 2007. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbol. Ecol. 59:265-73.

Tang, E. P. Y. & Vincent, W. F. 1999. Studies of thermal adaptation by high-latitude cyanobycteria. New Phytol. 142:315-23.

Teoh, M. L., Chu, W. L., Marchant, H. & Phang, S. M. 2004. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J. Ap. Phycol. 16:421-30.

Ter Braak, C. J. F. & Šmilauer, P. 2012. Canoco Reference Manual and User's Guide: Software for Ordination, Version 5.0. Microcomputer Power, Ithaca, USA, 496 pp.

Tscherko, D., Bolter, M., Beyer, L., Chen, J., Elster, J., Kandeler, E., Kuhn, D. & Blume, H. P. 2003. Biomass and enzyme activity of two soil transects at King George Island, maritime Antarctica. Arct. Antarct. Alp. Res. 35:34-47.

Vona, V., Di Martino Rigano, V., Lobosco, O., Carfagna, S., Esposito, S. & Rigano, C. 2004. Temperature responses of growth, photosynthesis, respiration and NADH: nitrate reductase in cryophilic and mesophilic algae. New Phytol. 163:325-31.

Vonshak, A. & Torzillo, G. 2004. Environmental stress physiology. In Richmond, A. [Ed.] Handbook of Microbial Culture, Biotechnology and Applied Phycology. Wiley-Blackwell, Oxford, pp. 57-82.

Vyverman, W., Verleyen, E., Wilmotte, A., Hodgson, D. A., Willems, A., Peeters, K., Van de Vijver, B., De Wever, A., Leliaert, F. & Sabbe, K. 2010. Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci. 4:103-13.

Wan, X. Z., Li, T. T., Zhong, R. T., Chen, H. B., Xia, X., Gao, L. T., Gao, X. X., Liu, B., Zhang, H. Y. & Zhao, C. 2019. Anti-diabetic activity of PUFAs-rich extracts of Chlorella pyrenoidosa and Spirulina platensis in rats. Food Chem. Toxicol. 128:233-9.

Watson, S. B. 2003. Cyanobacterial and eukaryotic algal odour compounds: signals or by-products? A review of their biological activity. Phycologia 42:332-50.

Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A. G., Camire, M. E. & Brawley, S. H. 2017. Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol. 29:949-82.

Wong, C. Y., Teoh, M. L., Phang, S. M., Lim, P. E. & Beardall, J. 2015. Interactive effects of temperature and UV radiation on photosynthesis of Chlorella strains from polar, temperate and tropical environments: differential impacts on damage and repair. PLoS ONE 10:e0139469.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...