Trihalomethanes in Drinking Water and Bladder Cancer Burden in the European Union
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/S019669/1
Medical Research Council - United Kingdom
PubMed
31939704
PubMed Central
PMC7015561
DOI
10.1289/ehp4495
Knihovny.cz E-zdroje
- MeSH
- chemické látky znečišťující vodu * MeSH
- čištění vody MeSH
- Evropská unie MeSH
- lidé MeSH
- nádory močového měchýře epidemiologie MeSH
- pitná voda chemie MeSH
- trihalomethany * MeSH
- vystavení vlivu životního prostředí statistika a číselné údaje MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- pitná voda MeSH
- trihalomethany * MeSH
BACKGROUND: Trihalomethanes (THMs) are widespread disinfection by-products (DBPs) in drinking water, and long-term exposure has been consistently associated with increased bladder cancer risk. OBJECTIVE: We assessed THM levels in drinking water in the European Union as a marker of DBP exposure and estimated the attributable burden of bladder cancer. METHODS: We collected recent annual mean THM levels in municipal drinking water in 28 European countries (EU28) from routine monitoring records. We estimated a linear exposure-response function for average residential THM levels and bladder cancer by pooling data from studies included in the largest international pooled analysis published to date in order to estimate odds ratios (ORs) for bladder cancer associated with the mean THM level in each country (relative to no exposure), population-attributable fraction (PAF), and number of attributable bladder cancer cases in different scenarios using incidence rates and population from the Global Burden of Disease study of 2016. RESULTS: We obtained 2005-2018 THM data from EU26, covering 75% of the population. Data coverage and accuracy were heterogeneous among countries. The estimated population-weighted mean THM level was 11.7μg/L [standard deviation (SD) of 11.2]. The estimated bladder cancer PAF was 4.9% [95% confidence interval (CI): 2.5, 7.1] overall (range: 0-23%), accounting for 6,561 (95% CI: 3,389, 9,537) bladder cancer cases per year. Denmark and the Netherlands had the lowest PAF (0.0% each), while Cyprus (23.2%), Malta (17.9%), and Ireland (17.2%) had the highest among EU26. In the scenario where no country would exceed the current EU mean, 2,868 (95% CI: 1,522, 4,060; 43%) annual attributable bladder cancer cases could potentially be avoided. DISCUSSION: Efforts have been made to reduce THM levels in the European Union. However, assuming a causal association, current levels in certain countries still could lead to a considerable burden of bladder cancer that could potentially be avoided by optimizing water treatment, disinfection, and distribution practices, among other possible measures. https://doi.org/10.1289/EHP4495.
Center for Environmental and Respiratory Health Research University of Oulu Oulu Finland
CIBER Epidemiologia y Salud Pública Madrid Spain
Cranfield Water Science Institute Cranfield University Cranfield Bedford UK
Department of Environmental Epidemiology Nofer Institute of Occupational Medicine Lodz Poland
Geological Survey of Denmark and Greenland Aarhus Denmark
Hospital del Mar Medical Research Institute Barcelona Spain
Imperial College of London London UK
London School of Hygiene and Tropical Medicine London UK
National Centre for Register based Research Aarhus University Aarhus Denmark
National Institute of Public Health Ljubljana Slovenia
National Institute of Public Health Prague Czech Republic
National Public Health Center Budapest Hungary
Public Health Authority of the Slovak Republic Bratislava Slovak Republic
Public Health Department Estonian Ministry of Social Affairs Tallinn Estonia
Public Health Division Ministry of Health of the Republic Latvia Health Inspectorate Riga Latvia
Santé Publique France Saint Maurice France
The Cyprus Institute Aglantzia Nicosia Cyprus
Universitat Pompeu Fabra Barcelona Spain
Université de Rennes Institut national de la santé et de la recherche médicale Rennes France
Zobrazit více v PubMed
Amjad H, Hashmi I, Rehman MSU, Ali Awan M, Ghaffar S, Khan Z. 2013. Cancer and non-cancer risk assessment of trihalomethanes in urban drinking water supplies of Pakistan. Ecotoxicol Environ Saf 91:25–31, PMID: 23453349, 10.1016/j.ecoenv.2013.01.008. PubMed DOI
Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. 2017. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol 71(1):96–108, PMID: 27370177, 10.1016/j.eururo.2016.06.010. PubMed DOI
Babayigit MA, Ogur R, Tekbas OF. 2016. Evaluation of the effects of disinfection methods on volatile organic pollutant levels and some physicochemical parameters of water. J Environ Prot Ecol 17(2):460–468.
Beane Freeman LE, Cantor KP, Baris D, Nuckols J, Johnson A, Colt J, et al. . 2017. Bladder cancer and water disinfection by-product exposures through multiple routes: a population-based case-control study (New England, USA). Environ Health Perspect 125(6):067010, PMID: 28636529, 10.1289/EHP89. PubMed DOI PMC
Bujar DH, Vezi D, Ismaili M, Shabani A, Abduli S. 2017. Seasonal variation of trihalomethanes concentration in Tetova’s drinking water (part B). World J Appl Environ Chem 1(2):42–52.
Bujar DH, Vezi D, Ismaili M, Shabani A, Reka AA. 2013. Variation of trihalomethanes concentration in Tetova’s drinking water in the autumn season. Middle East J Sci Res 16(6):814–821.
Cantor KP, Lynch CF, Hildesheim ME, Dosemeci M, Lubin J, Alavanja M, et al. . 1998. Drinking water source and chlorination byproducts. I. Risk of bladder cancer. Epidemiology 9(1):21–28, PMID: 9430264, 10.1097/00001648-199801000-00007. PubMed DOI
Cantor KP, Villanueva CM, Silverman DT, Figueroa JD, Real FX, Garcia-Closas M, et al. . 2010. Polymorphisms in GSTT1, GSTZ1, and CYP2E1, disinfection by-products, and risk of bladder cancer in Spain. Environ Health Perspect 118(11):1545–1550, PMID: 20675267, 10.1289/ehp.1002206. PubMed DOI PMC
Charisiadis P, Andra SS, Makris KC, Christodoulou M, Christophi CA, Kargaki S, et al. . 2014. Household cleaning activities as noningestion exposure determinants of urinary trihalomethanes. Environ Sci Technol 48(1):770–780, PMID: 24266582, 10.1021/es404220z. PubMed DOI
Charisiadis P, Andra SS, Makris KC, Christophi CA, Skarlatos D, Vamvakousis V, et al. . 2015. Spatial and seasonal variability of tap water disinfection by-products within distribution pipe networks. Sci Total Environ 506–507:26–35, PMID: 25460936, 10.1016/j.scitotenv.2014.10.071. PubMed DOI
Chowdhury S. 2013. Exposure assessment for trihalomethanes in municipal drinking water and risk reduction strategy. Sci Total Environ 463–464:922–930, PMID: 23872246, 10.1016/j.scitotenv.2013.06.104. PubMed DOI
Cohl M, Lazar L, Cretescu I, Balasanian I. 2015. Trihalomethanes issues drinking water after chlorination treatment. Revista de chimie 66(9):1282–1287.
Cordier S, Clavel J, Limasset JC, Boccon-Gibod L, Le Moual N, Mandereau L, et al. . 1993. Occupational risks of bladder cancer in France: a multicentre case-control study. Int J Epidemiol 22(3):403–411, PMID: 8359955, 10.1093/ije/22.3.403. PubMed DOI
Corso M, Galey C, Beaudeau P. 2017. Évaluation quantitative de l’impact sanitaire des sous-produits de chloration dans l’eau destinée à la consommation humaine en France (in French). Saint-Maurice, France: Santé Publique France.
Corso M, Galey C, Seux R, Beaudeau P. 2018. An assessment of current and past concentrations of trihalomethanes in drinking water throughout France. Int J Environ Res Public Health 15(8):E1669, PMID: 30082664, 10.3390/ijerph15081669. PubMed DOI PMC
Costet N, Villanueva CM, Jaakkola JJK, Kogevinas M, Cantor KP, King WD, et al. . 2011. Water disinfection by-products and bladder cancer: is there a European specificity? A pooled and meta-analysis of European case-control studies. Occup Environ Med 68(5):379–385, PMID: 21389011, 10.1136/oem.2010.062703. PubMed DOI
Courcier J-P, Decerle D, Jédor B, Thibert S, Welté B. 2014. To limit the formation of disinfection by-products. The case of bromate and trihalomethanes in drinking water (in French). Tech Sci Methodes 6:69–83, 10.1051/tsm/201406069. DOI
Dirtu D, Pancu M, Minea ML, Dirtu AC, Sandu I. 2016. Occurrence and assessment of selected chemical contaminants in drinking water from Eastern Romania. Revista de chimie 67(10):2059–2064.
EC (European Commission). 1998. Council directive of 3 November 1998 on the quality of water intended for human consumption. European Council Directive 98/83/EC. Off J Eur Communities L330:23.
EC. 2018. Proposal for a Directive of the European Parliament and of the Council on the quality of water intended for human consumption (recast). Off J Eur Communities 64:55–57.
EIONET (European Environment Information and Observation Network). EIONET Central Data Repository. http://cdr.eionet.europa.eu/ [accessed 14 May 2018].
Espín-Pérez A, Font-Ribera L, van Veldhoven K, Krauskopf J, Portengen L, Chadeau-Hyam M, et al. . 2018. Blood transcriptional and microRNA responses to short-term exposure to disinfection by-products in a swimming pool. Environ Int 110:42–50, PMID: 29122314, 10.1016/j.envint.2017.10.003. PubMed DOI
ETC ICM (European Topic Centre on Inland Coastal and Marine Waters). 2015. Overview of the Drinking Water Quality in Europe. Results of the Reporting 2011–2013 under the Drinking Water Directive 98/83/EC. European Topic Centre on Inland Coastal and Marine Waters; https://data.europa.eu/euodp/en/data/dataset/g33Nsv6Vud3AmmX9EJeOw [accessed 16 December 2019].
Eurostat. Population on 1st January by age, sex and type of projection. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=proj_15npms&lang=en [accessed 9 May 2018].
Fantuzzi G, Aggazzotti G, Righi E, Predieri G, Giacobazzi P, Kanitz S, et al. . 2007. Exposure to organic halogen compounds in drinking water of 9 Italian regions: exposure to chlorites, chlorates, thrihalomethanes, trichloroethylene and tetrachloroethylene (in Italian). Ann Ig 19(4):345–354, PMID: 17937327. PubMed
GEUS (Geological Survey of Denmark and Greenland). National Well Database (Jupiter), Data gennem PCJupiter og PCJupiterXL (Data through PCJupiter and PCJupiterxl) (in Danish). http://www.geus.dk/produkter-ydelser-og-faciliteter/data-og-kort/national-boringsdatabase-jupiter/adgang-til-data/data-gennem-pcjupiter-og-pcjupiterxl-format/ [accessed 7 August 2018].
Gómez-Gutiérrez A, Navarro Bosch S, Claramunt JM, Vela JG. 2012. La qualitat sanitària de l’aigua de consum humà a Barcelona (in Spanish). Barcelona, Spain: Consorci Sanitari de Barcelona, Agència de Salut Pública.
Goslan EH, Krasner SW, Villanueva CM, Carrasco-Turigas G, Toledano MB, Kogevinas M, et al. . 2014. Disinfection by-product occurrence in selected European waters. J Water Supply Res Tech AQUA 63(5):379–390, 10.2166/aqua.2013.017. DOI
Hebert A, Forestier D, Lenes D, Benanou D, Jacob S, Arfi C, et al. . 2010. Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health. Water Res 44(10):3147–3165, PMID: 20409572, 10.1016/j.watres.2010.02.004. PubMed DOI
Hua G, Reckhow DA. 2007. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Water Res 41(8):1667–1678, PMID: 17360020, 10.1016/j.watres.2007.01.032. PubMed DOI
Hunkeler D, Laier T, Breider F, Jacobsen OS. 2012. Demonstrating a natural origin of chloroform in groundwater using stable carbon isotopes. Environ Sci Technol 46(11):6096–6101.5, PMID: 22554551, 10.1021/es204585d. PubMed DOI
IARC (International Agency for Research on Cancer). 1991. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Chlorinated Drinking Water; Chlorination By-Products; Some Other Halogenated Compounds; Cobalt and Cobalt Compounds. vol. 52 https://monographs.iarc.fr/wp-content/uploads/2018/06/mono52.pdf [accessed 10 September 2018]. PubMed PMC
IHME (Institute for Health Metrics and Evaluation). 2016a. Global Burden of Disease Study 2016 (GBD 2016): GBD results tool. http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2016-permalink/e0b78c316f672239f9eaab66c769afbc [accessed 25 April 2018].
IHME. 2016b. Global Burden of Disease Study 2016 (GBD 2016) population estimates 1950–2016. http://ghdx.healthdata.org/record/global-burden-disease-study-2016-gbd-2016-population-estimates-1950-2016 [accessed 25 April 2018].
INCa, InVS. 2011. Projection de l’incidence et de la mortalité par cancer en France en 2011: Rappoprt Technique (in French). Saint Maurice, France: Institut de Veille Sanitaire.
Jeong CH, Wagner ED, Siebert VR, Anduri S, Richardson SD, Daiber EJ, et al. . 2012. Occurrence and toxicity of disinfection byproducts in European drinking waters in relation with the HIWATE epidemiology study. Environ Sci Technol 46(21):12120–12128, PMID: 22958121, 10.1021/es3024226. PubMed DOI PMC
King WD, Marrett LD. 1996. Case-control study of bladder cancer and chlorination by-products in treated water (Ontario, Canada). Cancer Causes Control 7(6):596–604, PMID: 8932920, 10.1007/bf00051702. PubMed DOI
Kogevinas M, Villanueva CM, Font-Ribera L, Liviac D, Bustamante M, Espinoza F, et al. . 2010. Genotoxic effects in swimmers exposed to disinfection by-products in indoor swimming pools. Environ Health Perspect 118(11):1531–1537, PMID: 20833606, 10.1289/ehp.1001959. PubMed DOI PMC
Koivusalo M, Hakulinen T, Vartiainen T, Pukkala E, Jaakkola JJ, Tuomisto J. 1998. Drinking water mutagenicity and urinary tract cancers: a population-based case-control study in Finland. Am J Epidemiol 148(7):704–712, PMID: 9778177, 10.1093/aje/148.7.704. PubMed DOI
Kovacs MH, Ristoiu D, Haiduc I, Vancea S. 2007. Disinfection eficiency? Trihalomethanes formation after chlorination process [Power Point Presentation]. http://slideplayer.com/slide/4246604/ [accessed 10 September 2018]
Krasner SW, Kostopoulou M, Toledano MB, Wright J, Patelarou E, Kogevinas M, et al. . 2016. Occurrence of DBPs in drinking water of European regions for epidemiology studies. J Am Water Works Assoc 108(10):E501–E512, 10.5942/jawwa.2016.108.0152. DOI
Kristiana I, Tan J, Joll CA, Heitz A, von Gunten U, Charrois JQ. 2013. Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter. Water Res 47(2):535–546, PMID: 23164216, 10.1016/j.watres.2012.10.014. PubMed DOI
Llopis-González A, Morales-Suárez-Varela M, Sagrado-Vives S, Gimeno-Clemente N, Yusà-Pelecha V, Martí-Requena P, et al. . 2010. Long-term characterization of trihalomethane levels in drinking water. Toxicol Environ Chem 92(4):683–696, 10.1080/02772240903090524. DOI
Lynch CF, Woolson RF, O’Gorman T, Cantor KP. 1989. Chlorinated drinking water and bladder cancer: effect of misclassification on risk estimates. Arch Environ Health 44(4):252–259, PMID: 2782947, 10.1080/00039896.1989.9935891. PubMed DOI
Mueller N, Rojas-Rueda D, Basagaña X, Cirach M, Cole-Hunter T, Dadvand P, et al. . 2017. Urban and transport planning related exposures and mortality: a health impact assessment for cities. Environ Health Perspect 125(1):89–96, PMID: 27346385, 10.1289/EHP220. PubMed DOI PMC
Palacios M, F.-Pampillón J, Rodríguez ME. 2000. Organohalogenated compounds levels in chlorinated drinking waters and current compliance with quality standards throughout the European Union. Water Res 34(3):1002–1016, 10.1016/S0043-1354(99)00191-8. DOI
Palau M, Guevara E. 2014. Calidad del agua de consumo humano en España. Informe técnico. Año 2013 (in Spanish). Madrid, Spain: Ministerio de Sanidad, Servicios Sociales e Igualdad.
Plewa MJ, Wagner ED, Muellner MG, Hsu KM, Richardson SD. 2008. Comparative mammalian cell toxicity of N-DBPs and C-DBPs. In: Disinfection By-Products in Drinking Water. Karanfil T, Krasner SW, Westerhoff P, Xie Y, eds. Washington, DC: American Chemical Society, 36–50, 10.1021/bk-2008-0995.ch003. DOI
Premazzi G, Cardoso C, Conio O, Palumbo F, Ziglio G, Borgioli A, et al. . 1997. Exposure of the European Population to Trihalomethanes (THMs) in Drinking Water. vol. 2 Luxembourg: Environment Institute.
Regli S, Chen J, Messner M, Elovitz MS, Letkiewicz FJ, Pegram RA, et al. . 2015. Estimating potential increased bladder cancer risk due to increased bromide concentrations in sources of disinfected drinking waters. Environ Sci Technol 49(22):13094–13102, PMID: 26489011, 10.1021/acs.est.5b03547. PubMed DOI
Rice GE, Teuschler LK, Bull RJ, Simmons JE, Feder PI. 2009. Evaluating the similarity of complex drinking-water disinfection by-product mixtures: overview of the issues. J Toxicol Environ Health Part A 72(7):429–436, PMID: 19267305, 10.1080/15287390802608890. PubMed DOI
Richardson SD, Plewa MJ, Wagner ED, Schoeny R, Demarini DM. 2007. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res 636(1–3):178–242, PMID: 17980649, 10.1016/j.mrrev.2007.09.001. PubMed DOI
Richardson SD, Thruston AD Jr, Caughran TV, Chen PH, Collette TW, Schenck KM, et al. . 2000. Identification of new drinking water disinfection by- products from ozone, chlorine dioxide, chloramine, and chlorine. Water Air Soil Pollut 123(1–4):95–102, 10.1023/A:1005265509813. DOI
Rodriguez MJ, Sérodes J-B, Levallois P. 2004. Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system. Water Res 38(20):4367–4382, PMID: 15556212, 10.1016/j.watres.2004.08.018. PubMed DOI
Sorlini S, Gialdini F, Biasibetti M, Collivignarelli C. 2014. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation. Water Res 54:44–52, PMID: 24534637, 10.1016/j.watres.2014.01.038. PubMed DOI
Thach TT, Gurzau AE, Russi M, Dimitrascu I, Pop C, Popa O. 2012. An analysis of trihalomethane levels in the distribution networks of three Romanian cities. Carpathian J Earth Environ Sci 7(1):81–88.
Turner MC, Vineis P, Seleiro E, Dijmarescu M, Balshaw D, Bertollini R, et al. . 2018. EXPOsOMICS: final policy workshop and stakeholder consultation. BMC Public Health 18(1):260, PMID: 29448939, 10.1186/s12889-018-5160-z. PubMed DOI PMC
U.S. EPA (Environmental Protection Agency). 2005. Economic Analysis for the Final Stage 2 Disinfectants and Disinfection Byproducts Rule. EPA 815-R-05-010. Washington, DC: U.S. Environmental Protection Agency, Office of Water.
Villanueva CM, Cantor KP, Cordier S, Jaakkola JJ, King WD, Lynch CF, et al. . 2004. Disinfection byproducts and bladder cancer: a pooled analysis. Epidemiology 15(3):357–367, PMID: 15097021, 10.1097/01.ede.0000121380.02594.fc. PubMed DOI
Villanueva CM, Cantor KP, Grimalt JO, Malats N, Silverman D, Tardon A, et al. . 2007. Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. Am J Epidemiol 165(2):148–156, PMID: 17079692, 10.1093/aje/kwj364. PubMed DOI
Villanueva CM, Castano-Vinyals G, Moreno V, Carrasco-Turigas G, Aragonés N, Boldo E, et al. . 2012. Concentrations and correlations of disinfection by-products in municipal drinking water from an exposure assessment perspective. Environ Res 114:1–11, PMID: 22436294, 10.1016/j.envres.2012.02.002. PubMed DOI
Villanueva CM, Cordier S, Font-Ribera L, Salas LA, Levallois P. 2015. Overview of disinfection by-products and associated health effects. Curr Environ Health Rep 2(1):107–115, PMID: 26231245, 10.1007/s40572-014-0032-x. PubMed DOI
Villanueva CM, Fernández F, Malats N, Grimalt JO, Kogevinas M. 2003. Meta-analysis of studies on individual consumption of chlorinated drinking water and bladder cancer. J Epidemiol Community Health 57(3):166–173, PMID: 12594192, 10.1136/jech.57.3.166. PubMed DOI PMC
Villanueva CM, Gracia-Lavedan E, Bosetti C, Righi E, Molina AJ, Martín V, et al. . 2017. Colorectal cancer and long-term exposure to trihalomethanes in drinking water: a multicenter case–control study in Spain and Italy. Environ Health Perspect 125(1):56–65, PMID: 27383820, 10.1289/EHP155. PubMed DOI PMC
Vineis P, Chadeau-Hyam M, Gmuender H, Gulliver J, Herceg Z, Kleinjans J, et al. . 2017. The exposome in practice: design of the EXPOsOMICS project. Int J Hyg Environ Health 220(2 Pt A):142–151, PMID: 27576363, 10.1016/j.ijheh.2016.08.001. PubMed DOI PMC
von Gunten U. 2003. Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37(7):1469–1487, PMID: 12600375, 10.1016/S0043-1354(02)00458-X. PubMed DOI
Water_Team E. 2015. Drinking water monitoring results and water supply details for Ireland—year 2014 [Dataset]. http://erc.epa.ie/safer/iso19115/displayISO19115.jsp?isoID=3080 [accessed 29 June 2016].
WHO (World Health Organization). 2014. Metrics: population attributable fraction (PAF): quantifying the contribution of risk factors to the Burden of Disease. http://www.who.int/healthinfo/global_burden_disease/metrics_paf/en/ [accessed 10 September 2018].
WHO. 2015. The Health and Environment Linkages Initiative (HELI): quantitative assessment of environmental health impacts at population level. http://www.who.int/heli/tools/quantassess/en/ [accessed 10 September 2018].
Wong MCS, Fung FDH, Leung C, Cheung WWL, Goggins WB, Ng CF. 2018. The global epidemiology of bladder cancer: a joinpoint regression analysis of its incidence and mortality trends and projection. Sci Rep 8(1):1129, PMID: 29348548, 10.1038/s41598-018-19199-z. PubMed DOI PMC
Wood SN. 2006. Generalized Additive Models: An Introduction with R. Boca Raton, FL: Chapman and Hall, CRC.
Wright JM, Murphy PA, Nieuwenhuijsen MJ, Savitz DA. 2006. The impact of water consumption, point-of-use filtration and exposure categorization on exposure misclassification of ingested drinking water contaminants. Sci Total Environ 366(1):65–73, PMID: 16126253, 10.1016/j.scitotenv.2005.08.010. PubMed DOI