Cross-Linked Cyclodextrins Bimetallic Nanocatalysts: Applications in Microwave-Assisted Reductive Aminations

. 2020 Jan 19 ; 25 (2) : . [epub] 20200119

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31963796

The optimization of sustainable protocols for reductive amination has been a lingering challenge in green synthesis. In this context, a comparative study of different metal-loaded cross-linked cyclodextrins (CDs) were examined for the microwave (MW)-assisted reductive amination of aldehydes and ketones using either H2 or formic acid as a hydrogen source. The Pd/Cu heterogeneous nanocatalyst based on Pd (II) and Cu (I) salts embedded in a β-CD network was the most efficient in terms of yield and selectivity attained. In addition, the polymeric cross-linking avoided metal leaching, thus enhancing the process sustainability; good yields were realized using benzylamine under H2. These interesting findings were then applied to the MW-assisted one-pot synthesis of secondary amines via a tandem reductive amination of benzaldehyde with nitroaromatics under H2 pressure. The formation of a CuxPdy alloy under reaction conditions was discerned, and a synergic effect due to the cooperation between Cu and Pd has been hypothesized. During the reaction, the system worked as a bifunctional nanocatalyst wherein the Pd sites facilitate the reduction of nitro compounds, while the Cu species promote the subsequent imine hydrogenation affording structurally diverse secondary amines with high yields.

Zobrazit více v PubMed

Ono N. The Nitro Group in Organic Synthesis. Wiley; New York, NY, USA: 2001.

Talwar D., Salguero N., Robertson C., Xiao J. Primary Amines by Transfer Hydrogenative Reductive Amination of Ketones by Using Cyclometalated IrIII Catalysts. Chem. Eur. J. 2014;20:245–252. doi: 10.1002/chem.201303541. PubMed DOI

Gallardo-Donaire J., Ernst M., Trapp O., Schauba T. Direct Synthesis of Primary Amines via Ruthenium-Catalysed Amination of Ketones with Ammonia and Hydrogen. Adv. Synth. Catal. 2016;358:358–363. doi: 10.1002/adsc.201500968. DOI

Cheung C.W., Hu X.L. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with alkyl halides. Nat. Commun. 2016;7:12494–12502. doi: 10.1038/ncomms12494. PubMed DOI PMC

Feng J., Handa S., Gallou F., Lipshutz B.H. Safe and Selective Nitro Group Reductions Catalyzed by Sustainable and Recyclable Fe/ppm Pd Nanoparticles in Water at Room Temperature. Angew. Chem. Int. Ed. 2016;55:8979–8983. doi: 10.1002/anie.201604026. PubMed DOI

Yang H., Bradley S.J., Chan A., Waterhouse G.I.N., Nann T., Kruger P.E., Telfer S.G. Catalytically Active Bimetallic Nanoparticles Supported on Porous Carbon Capsules Derived from Metal–Organic Framework Composites. J. Am. Chem. Soc. 2016;138:11872–11881. doi: 10.1021/jacs.6b06736. PubMed DOI

Zhang B., Guo X.W., Liang H.J., Ge H.B., Gu X.M., Chen S., Yang H.M., Qin Y. Tailoring Pt–Fe2O3 Interfaces for Selective Reductive Coupling Reaction to Synthesize Imine. ACS Catal. 2016;6:6560–6566. doi: 10.1021/acscatal.6b01756. DOI

Yang H., Cui X., Deng Y., Shi F. Reductive Amination of Aldehydes and Amines with an Efficient Pd/NiO Catalyst. Synth. Commun. 2014;44:1314–1322. doi: 10.1080/00397911.2013.857690. DOI

Nakamura Y., Kon K., Touchy A., Shimizu K., Ueda W. Selective Synthesis of Primary Amines by Reductive Amination of Ketones with Ammonia over Supported Pt catalysts. ChemCatChem. 2015;7:921–924. doi: 10.1002/cctc.201402996. DOI

Behr A., Wintzer A., Lübke C., Müller M. Synthesis of primary amines from the renewable compound citronellal via biphasic reductive amination. J. Mol. Catal. A. 2015;404:74–82. doi: 10.1016/j.molcata.2015.04.006. DOI

Bódis J., Lefferts L., Muller T.E., Pestman R., Lercher J.A. Activity and Selectivity Control in Reductive Amination of Butyraldehyde over Noble Metal Catalysts. Catal. Lett. 2005;104:23–28. doi: 10.1007/s10562-005-7431-4. DOI

Drinkel E.E., Campedelli R.R., Manfredi A.M., Fiedler H.D., Nome F. Zwitterionic-Surfactant-Stabilized Palladium Nanoparticles as Catalysts in the Hydrogen Transfer Reductive Amination of Benzaldehydes. J. Org. Chem. 2014;79:2574–2579. doi: 10.1021/jo5000362. PubMed DOI

Stemmler T., Surkus A.-E., Pohl M.-M., Junge K., Beller M. Iron-Catalyzed Synthesis of Secondary Amines: On the Way to Green Reductive Aminations. ChemSusChem. 2014;7:3012–3016. doi: 10.1002/cssc.201402413. PubMed DOI

Bahadur Singh S., Tandon P.K. Catalysis: A Brief Review on Nano-Catalyst. JECE. 2014;2:106–115.

He L., Weniger F., Neumann H., Beller M. Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry. Angew. Chem. Int. Ed. 2016;55:12582–12594. doi: 10.1002/anie.201603198. PubMed DOI

Murugesan K., Beller M., Jagadeesh R.V. Reusable Nickel Nanoparticles-Catalyzed Reductive Amination for Selective Synthesis of Primary Amines. Angew. Chem. Int. Ed. 2019;58:5064–5068. doi: 10.1002/anie.201812100. PubMed DOI

Varma R.S. Nano-catalysts with magnetic core: Sustainable options for greener synthesis. Sustain. Chem. Process. 2014;2:11. doi: 10.1186/2043-7129-2-11. DOI

Polshettiwar V., Varma R.S. Green Chemistry by Nano-Catalysis. Green Chem. 2010;12:743–754. doi: 10.1039/b921171c. DOI

Polshettiwar V., Baruwati B., Varma R.S. Nanoparticle-supported and magnetically recoverable nickel catalyst: A robust and economic hydrogenation and transfer hydrogenation protocol. Green Chem. 2009;11:127–131. doi: 10.1039/B815058C. DOI

Cho A., Byun S., Kim B.M. AuPdFe3O4 Nanoparticle Catalysts for Highly Selective, One-Pot Cascade Nitro-Reduction and Reductive Amination. Adv. Synth. Catal. 2018;360:1253–1261. doi: 10.1002/adsc.201701462. DOI

Manzoli M., Calcio Gaudino E., Cravotto G., Tabasso S., Baig R.B.N., Colacino E., Varma R.S. Microwave-assisted Reductive Amination with Aqueous Ammonia: Sustainable Pathway using Recyclable Magnetic Nickel-based Nano-catalyst. ACS Sustain. Chem. Eng. 2019;76:5963–5974. doi: 10.1021/acssuschemeng.8b06054. DOI

Cravotto G., Carnaroglio D., editors. Microwave Chemistry. De Gruyter Graduate GmbH; Boston, MA, USA: 2017.

Ruiz-Castillo P., Buchwald S.L. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions. Chem. Rev. 2016;116:12564–12649. doi: 10.1021/acs.chemrev.6b00512. PubMed DOI PMC

Stemmler T., Westerhaus F.A., Surkus A.-E., Pohl M.-M., Junge K., Beller M. General and selective reductive amination of carbonyl compounds using a core-shell structured Co3O4/NGr@C catalyst. Green Chem. 2014;16:4535–4540. doi: 10.1039/C4GC00536H. DOI

Nasrollahzadeh M., Motahharifar N., Aghbolagh A.M., Sajjadi M., Shokouhimehr M., Varma R.S. Recent Advances in N-Formylation of Amines and Nitroarenes Using Efficient (Nano)Catalysts in Eco-Friendly Media. Green Chem. 2019;21:5144–5167. doi: 10.1039/C9GC01822K. DOI

Li L., Niu Z., Cai S., Zhi Y., Li H., Rong H., Liu L., Liu L., He W., Li Y. A PdAg bimetallic nanocatalyst for selective reductive amination of nitroarenes. Chem. Commun. 2013;49:6843–6845. doi: 10.1039/c3cc00249g. PubMed DOI

Ergen S., Nisanc B., Metin O. One-pot reductive amination of aldehydes with nitroarenes using formic acid as the hydrogen donor and mesoporous graphitic carbon nitride supported AgPd alloy nanoparticles as the heterogeneous catalyst. New J. Chem. 2018;42:10000–10006. doi: 10.1039/C8NJ01569D. DOI

Zhou P., Yu C., Jiang L., Lv K., Zhang Z. One-pot reductive amination of carbonyl compounds with nitro compounds with CO/H2O as the hydrogen donor over non-noble cobalt catalyst. J. Catal. 2017;352:264–273. doi: 10.1016/j.jcat.2017.05.026. DOI

Liang S.Z., Monsen P., Hammond G.B., Xu B. Au/TiO2 catalyzed reductive amination of aldehydes and ketones using formic acid as reductant. Org. Chem. Front. 2016;3:505–509. doi: 10.1039/C5QO00439J. DOI

Dangerfield E.M., Plunkett C.H., Win-Mason A.L., Stocker B.L., Timmer M.S.M. Protecting-Group-Free Synthesis of Amines: Synthesis of Primary Amines from Aldehydes via Reductive Amination. J. Org. Chem. 2010;75:5470–5477. doi: 10.1021/jo100004c. PubMed DOI

Jiang L., Zhou P., Zhang Z., Chi Q., Jin S. Environmentally friendly synthesis of secondary amines via one-pot reductive amination over a heterogeneous Co–Nx catalyst. New J. Chem. 2017;41:11991–11997. doi: 10.1039/C7NJ02727C. DOI

Calcio Gaudino E., Tagliapietra S., Palmisano G., Martina K., Carnaroglio D., Cravotto G. Microwave-Assisted, Green Synthesis of 4(3H)-Quinazolinones under CO Pressure in γ-Valerolactone and Reusable Pd/β-Cyclodextrin Cross-Linked Catalyst. ACS Sustain. Chem. Eng. 2017;5:9233–9243. doi: 10.1021/acssuschemeng.7b02193. DOI

Herbois R., Noël S., Léger B., Tilloy S., Menuel S., Addad A., Martel B., Ponchel A., Monflier E. Ruthenium-containing β-cyclodextrin polymer globules for the catalytic hydrogenation of biomass-derived furanic compounds. Green Chem. 2015;17:2444–2454. doi: 10.1039/C5GC00005J. DOI

Cintas P., Cravotto G., Calcio Gaudino E., Orio L., Boffa L. Reticulated Pd(II)/Cu(I) cyclodextrin complexes as recyclable green catalyst for Sonogashira alkynylation. Catal. Sci. Technol. 2012;2:85–87. doi: 10.1039/C1CY00378J. DOI

Cravotto G., Calcio Gaudino E., Tagliapietra S., Carnaroglio D., Procopio A. A Green Approach to Heterogeneous Catalysis Using Ligand-Free, Metal-Loaded Cross-Linked Cyclodextrins. Green Process. Synth. 2012;1:269–273. doi: 10.1515/gps-2012-0029. DOI

Tabasso S., Calcio Gaudino E., Acciardo E., Manzoli M., Giacomino A., Cravotto G. Microwave-Assisted Dehydrogenative Cross Coupling Reactions in γ-valerolactone with a reusable Pd/β-cyclodextrin crosslinked catalyst. Molecules. 2019;24:288. doi: 10.3390/molecules24020288. PubMed DOI PMC

Karthika A., Rani Rosaline D., Inbanathan S.S.R., Suganthi A., Rajarajan M. Fabrication of Cupric oxide decorated β-cyclodextrin nanocomposite solubilized Nafion as a high-performance electrochemical sensor for L-tyrosine detection. J. Phys. Chem. Solids. 2020;136:109145. doi: 10.1016/j.jpcs.2019.109145. DOI

Yashnik S., Ismagilov Z., Anufrienko V. Catalytic properties and electronic structure of copper ions in Cu-ZSM-5. Catal. Today. 2005;110:310–322. doi: 10.1016/j.cattod.2005.09.029. DOI

Bravo-Suárez J.J., Subramaniam B., Chaudhari R.V. Ultraviolet−Visible Spectroscopy and Temperature-Programmed Techniques as Tools for Structural Characterization of Cu in CuMgAlOx Mixed Metal Oxides. J. Phys. Chem. C. 2012;116:18207–18221. doi: 10.1021/jp303631v. DOI

Eppinger J., Huang K.-W. Formic Acid as a Hydrogen Energy Carrier. ACS Energy Lett. 2017;2:188–195. doi: 10.1021/acsenergylett.6b00574. DOI

Coq B., Figueras F.J. Bimetallic palladium catalysts: Influence of the co-metal on the catalyst performance. Mol. Catal. A Chem. 2001;173:117–134. doi: 10.1016/S1381-1169(01)00148-0. DOI

Metin O., Sun X., Sun S. Monodisperse gold–palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale. 2013;5:910–912. doi: 10.1039/C2NR33637E. PubMed DOI

Somorjai G.A., Park J.Y. Molecular Factors of Catalytic Selectivity. Angew. Chem. Int. Ed. 2008;47:9212. doi: 10.1002/anie.200803181. PubMed DOI

Dash P., Dehm N.A., Scott R.W.J. Bimetallic PdAu nanoparticles as hydrogenation catalysts in imidazolium ionic liquids. J. Mol. Catal. A Chem. 2008;286:114–119. doi: 10.1016/j.molcata.2008.02.003. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...