Cross-Linked Cyclodextrins Bimetallic Nanocatalysts: Applications in Microwave-Assisted Reductive Aminations
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31963796
PubMed Central
PMC7024243
DOI
10.3390/molecules25020410
PII: molecules25020410
Knihovny.cz E-zdroje
- Klíčová slova
- bimetallic nanocatalyst, heterogeneous catalysis, microwaves, one-pot reductive amination, sustainable protocols,
- MeSH
- aminace MeSH
- aminy chemie MeSH
- benzaldehydy chemie MeSH
- beta-cyklodextriny chemie MeSH
- cyklodextriny chemie MeSH
- katalýza MeSH
- kovy chemie MeSH
- měď chemie MeSH
- mikrovlny * MeSH
- nanočástice chemie MeSH
- palladium chemie MeSH
- reagencia zkříženě vázaná chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminy MeSH
- benzaldehyde MeSH Prohlížeč
- benzaldehydy MeSH
- beta-cyklodextriny MeSH
- betadex MeSH Prohlížeč
- cyklodextriny MeSH
- kovy MeSH
- měď MeSH
- palladium MeSH
- reagencia zkříženě vázaná MeSH
The optimization of sustainable protocols for reductive amination has been a lingering challenge in green synthesis. In this context, a comparative study of different metal-loaded cross-linked cyclodextrins (CDs) were examined for the microwave (MW)-assisted reductive amination of aldehydes and ketones using either H2 or formic acid as a hydrogen source. The Pd/Cu heterogeneous nanocatalyst based on Pd (II) and Cu (I) salts embedded in a β-CD network was the most efficient in terms of yield and selectivity attained. In addition, the polymeric cross-linking avoided metal leaching, thus enhancing the process sustainability; good yields were realized using benzylamine under H2. These interesting findings were then applied to the MW-assisted one-pot synthesis of secondary amines via a tandem reductive amination of benzaldehyde with nitroaromatics under H2 pressure. The formation of a CuxPdy alloy under reaction conditions was discerned, and a synergic effect due to the cooperation between Cu and Pd has been hypothesized. During the reaction, the system worked as a bifunctional nanocatalyst wherein the Pd sites facilitate the reduction of nitro compounds, while the Cu species promote the subsequent imine hydrogenation affording structurally diverse secondary amines with high yields.
Zobrazit více v PubMed
Ono N. The Nitro Group in Organic Synthesis. Wiley; New York, NY, USA: 2001.
Talwar D., Salguero N., Robertson C., Xiao J. Primary Amines by Transfer Hydrogenative Reductive Amination of Ketones by Using Cyclometalated IrIII Catalysts. Chem. Eur. J. 2014;20:245–252. doi: 10.1002/chem.201303541. PubMed DOI
Gallardo-Donaire J., Ernst M., Trapp O., Schauba T. Direct Synthesis of Primary Amines via Ruthenium-Catalysed Amination of Ketones with Ammonia and Hydrogen. Adv. Synth. Catal. 2016;358:358–363. doi: 10.1002/adsc.201500968. DOI
Cheung C.W., Hu X.L. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with alkyl halides. Nat. Commun. 2016;7:12494–12502. doi: 10.1038/ncomms12494. PubMed DOI PMC
Feng J., Handa S., Gallou F., Lipshutz B.H. Safe and Selective Nitro Group Reductions Catalyzed by Sustainable and Recyclable Fe/ppm Pd Nanoparticles in Water at Room Temperature. Angew. Chem. Int. Ed. 2016;55:8979–8983. doi: 10.1002/anie.201604026. PubMed DOI
Yang H., Bradley S.J., Chan A., Waterhouse G.I.N., Nann T., Kruger P.E., Telfer S.G. Catalytically Active Bimetallic Nanoparticles Supported on Porous Carbon Capsules Derived from Metal–Organic Framework Composites. J. Am. Chem. Soc. 2016;138:11872–11881. doi: 10.1021/jacs.6b06736. PubMed DOI
Zhang B., Guo X.W., Liang H.J., Ge H.B., Gu X.M., Chen S., Yang H.M., Qin Y. Tailoring Pt–Fe2O3 Interfaces for Selective Reductive Coupling Reaction to Synthesize Imine. ACS Catal. 2016;6:6560–6566. doi: 10.1021/acscatal.6b01756. DOI
Yang H., Cui X., Deng Y., Shi F. Reductive Amination of Aldehydes and Amines with an Efficient Pd/NiO Catalyst. Synth. Commun. 2014;44:1314–1322. doi: 10.1080/00397911.2013.857690. DOI
Nakamura Y., Kon K., Touchy A., Shimizu K., Ueda W. Selective Synthesis of Primary Amines by Reductive Amination of Ketones with Ammonia over Supported Pt catalysts. ChemCatChem. 2015;7:921–924. doi: 10.1002/cctc.201402996. DOI
Behr A., Wintzer A., Lübke C., Müller M. Synthesis of primary amines from the renewable compound citronellal via biphasic reductive amination. J. Mol. Catal. A. 2015;404:74–82. doi: 10.1016/j.molcata.2015.04.006. DOI
Bódis J., Lefferts L., Muller T.E., Pestman R., Lercher J.A. Activity and Selectivity Control in Reductive Amination of Butyraldehyde over Noble Metal Catalysts. Catal. Lett. 2005;104:23–28. doi: 10.1007/s10562-005-7431-4. DOI
Drinkel E.E., Campedelli R.R., Manfredi A.M., Fiedler H.D., Nome F. Zwitterionic-Surfactant-Stabilized Palladium Nanoparticles as Catalysts in the Hydrogen Transfer Reductive Amination of Benzaldehydes. J. Org. Chem. 2014;79:2574–2579. doi: 10.1021/jo5000362. PubMed DOI
Stemmler T., Surkus A.-E., Pohl M.-M., Junge K., Beller M. Iron-Catalyzed Synthesis of Secondary Amines: On the Way to Green Reductive Aminations. ChemSusChem. 2014;7:3012–3016. doi: 10.1002/cssc.201402413. PubMed DOI
Bahadur Singh S., Tandon P.K. Catalysis: A Brief Review on Nano-Catalyst. JECE. 2014;2:106–115.
He L., Weniger F., Neumann H., Beller M. Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry. Angew. Chem. Int. Ed. 2016;55:12582–12594. doi: 10.1002/anie.201603198. PubMed DOI
Murugesan K., Beller M., Jagadeesh R.V. Reusable Nickel Nanoparticles-Catalyzed Reductive Amination for Selective Synthesis of Primary Amines. Angew. Chem. Int. Ed. 2019;58:5064–5068. doi: 10.1002/anie.201812100. PubMed DOI
Varma R.S. Nano-catalysts with magnetic core: Sustainable options for greener synthesis. Sustain. Chem. Process. 2014;2:11. doi: 10.1186/2043-7129-2-11. DOI
Polshettiwar V., Varma R.S. Green Chemistry by Nano-Catalysis. Green Chem. 2010;12:743–754. doi: 10.1039/b921171c. DOI
Polshettiwar V., Baruwati B., Varma R.S. Nanoparticle-supported and magnetically recoverable nickel catalyst: A robust and economic hydrogenation and transfer hydrogenation protocol. Green Chem. 2009;11:127–131. doi: 10.1039/B815058C. DOI
Cho A., Byun S., Kim B.M. AuPdFe3O4 Nanoparticle Catalysts for Highly Selective, One-Pot Cascade Nitro-Reduction and Reductive Amination. Adv. Synth. Catal. 2018;360:1253–1261. doi: 10.1002/adsc.201701462. DOI
Manzoli M., Calcio Gaudino E., Cravotto G., Tabasso S., Baig R.B.N., Colacino E., Varma R.S. Microwave-assisted Reductive Amination with Aqueous Ammonia: Sustainable Pathway using Recyclable Magnetic Nickel-based Nano-catalyst. ACS Sustain. Chem. Eng. 2019;76:5963–5974. doi: 10.1021/acssuschemeng.8b06054. DOI
Cravotto G., Carnaroglio D., editors. Microwave Chemistry. De Gruyter Graduate GmbH; Boston, MA, USA: 2017.
Ruiz-Castillo P., Buchwald S.L. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions. Chem. Rev. 2016;116:12564–12649. doi: 10.1021/acs.chemrev.6b00512. PubMed DOI PMC
Stemmler T., Westerhaus F.A., Surkus A.-E., Pohl M.-M., Junge K., Beller M. General and selective reductive amination of carbonyl compounds using a core-shell structured Co3O4/NGr@C catalyst. Green Chem. 2014;16:4535–4540. doi: 10.1039/C4GC00536H. DOI
Nasrollahzadeh M., Motahharifar N., Aghbolagh A.M., Sajjadi M., Shokouhimehr M., Varma R.S. Recent Advances in N-Formylation of Amines and Nitroarenes Using Efficient (Nano)Catalysts in Eco-Friendly Media. Green Chem. 2019;21:5144–5167. doi: 10.1039/C9GC01822K. DOI
Li L., Niu Z., Cai S., Zhi Y., Li H., Rong H., Liu L., Liu L., He W., Li Y. A PdAg bimetallic nanocatalyst for selective reductive amination of nitroarenes. Chem. Commun. 2013;49:6843–6845. doi: 10.1039/c3cc00249g. PubMed DOI
Ergen S., Nisanc B., Metin O. One-pot reductive amination of aldehydes with nitroarenes using formic acid as the hydrogen donor and mesoporous graphitic carbon nitride supported AgPd alloy nanoparticles as the heterogeneous catalyst. New J. Chem. 2018;42:10000–10006. doi: 10.1039/C8NJ01569D. DOI
Zhou P., Yu C., Jiang L., Lv K., Zhang Z. One-pot reductive amination of carbonyl compounds with nitro compounds with CO/H2O as the hydrogen donor over non-noble cobalt catalyst. J. Catal. 2017;352:264–273. doi: 10.1016/j.jcat.2017.05.026. DOI
Liang S.Z., Monsen P., Hammond G.B., Xu B. Au/TiO2 catalyzed reductive amination of aldehydes and ketones using formic acid as reductant. Org. Chem. Front. 2016;3:505–509. doi: 10.1039/C5QO00439J. DOI
Dangerfield E.M., Plunkett C.H., Win-Mason A.L., Stocker B.L., Timmer M.S.M. Protecting-Group-Free Synthesis of Amines: Synthesis of Primary Amines from Aldehydes via Reductive Amination. J. Org. Chem. 2010;75:5470–5477. doi: 10.1021/jo100004c. PubMed DOI
Jiang L., Zhou P., Zhang Z., Chi Q., Jin S. Environmentally friendly synthesis of secondary amines via one-pot reductive amination over a heterogeneous Co–Nx catalyst. New J. Chem. 2017;41:11991–11997. doi: 10.1039/C7NJ02727C. DOI
Calcio Gaudino E., Tagliapietra S., Palmisano G., Martina K., Carnaroglio D., Cravotto G. Microwave-Assisted, Green Synthesis of 4(3H)-Quinazolinones under CO Pressure in γ-Valerolactone and Reusable Pd/β-Cyclodextrin Cross-Linked Catalyst. ACS Sustain. Chem. Eng. 2017;5:9233–9243. doi: 10.1021/acssuschemeng.7b02193. DOI
Herbois R., Noël S., Léger B., Tilloy S., Menuel S., Addad A., Martel B., Ponchel A., Monflier E. Ruthenium-containing β-cyclodextrin polymer globules for the catalytic hydrogenation of biomass-derived furanic compounds. Green Chem. 2015;17:2444–2454. doi: 10.1039/C5GC00005J. DOI
Cintas P., Cravotto G., Calcio Gaudino E., Orio L., Boffa L. Reticulated Pd(II)/Cu(I) cyclodextrin complexes as recyclable green catalyst for Sonogashira alkynylation. Catal. Sci. Technol. 2012;2:85–87. doi: 10.1039/C1CY00378J. DOI
Cravotto G., Calcio Gaudino E., Tagliapietra S., Carnaroglio D., Procopio A. A Green Approach to Heterogeneous Catalysis Using Ligand-Free, Metal-Loaded Cross-Linked Cyclodextrins. Green Process. Synth. 2012;1:269–273. doi: 10.1515/gps-2012-0029. DOI
Tabasso S., Calcio Gaudino E., Acciardo E., Manzoli M., Giacomino A., Cravotto G. Microwave-Assisted Dehydrogenative Cross Coupling Reactions in γ-valerolactone with a reusable Pd/β-cyclodextrin crosslinked catalyst. Molecules. 2019;24:288. doi: 10.3390/molecules24020288. PubMed DOI PMC
Karthika A., Rani Rosaline D., Inbanathan S.S.R., Suganthi A., Rajarajan M. Fabrication of Cupric oxide decorated β-cyclodextrin nanocomposite solubilized Nafion as a high-performance electrochemical sensor for L-tyrosine detection. J. Phys. Chem. Solids. 2020;136:109145. doi: 10.1016/j.jpcs.2019.109145. DOI
Yashnik S., Ismagilov Z., Anufrienko V. Catalytic properties and electronic structure of copper ions in Cu-ZSM-5. Catal. Today. 2005;110:310–322. doi: 10.1016/j.cattod.2005.09.029. DOI
Bravo-Suárez J.J., Subramaniam B., Chaudhari R.V. Ultraviolet−Visible Spectroscopy and Temperature-Programmed Techniques as Tools for Structural Characterization of Cu in CuMgAlOx Mixed Metal Oxides. J. Phys. Chem. C. 2012;116:18207–18221. doi: 10.1021/jp303631v. DOI
Eppinger J., Huang K.-W. Formic Acid as a Hydrogen Energy Carrier. ACS Energy Lett. 2017;2:188–195. doi: 10.1021/acsenergylett.6b00574. DOI
Coq B., Figueras F.J. Bimetallic palladium catalysts: Influence of the co-metal on the catalyst performance. Mol. Catal. A Chem. 2001;173:117–134. doi: 10.1016/S1381-1169(01)00148-0. DOI
Metin O., Sun X., Sun S. Monodisperse gold–palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale. 2013;5:910–912. doi: 10.1039/C2NR33637E. PubMed DOI
Somorjai G.A., Park J.Y. Molecular Factors of Catalytic Selectivity. Angew. Chem. Int. Ed. 2008;47:9212. doi: 10.1002/anie.200803181. PubMed DOI
Dash P., Dehm N.A., Scott R.W.J. Bimetallic PdAu nanoparticles as hydrogenation catalysts in imidazolium ionic liquids. J. Mol. Catal. A Chem. 2008;286:114–119. doi: 10.1016/j.molcata.2008.02.003. DOI