Regulation of mRNA translation by a photoriboswitch
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
R01 GM094929
NIGMS NIH HHS - United States
T32 GM108561
NIGMS NIH HHS - United States
PubMed
32053109
PubMed Central
PMC7051177
DOI
10.7554/elife.51737
PII: 51737
Knihovny.cz E-resources
- Keywords
- E. coli, aptamer, biochemistry, chemical biology, luciferase, photoregulation, riboswitch, stilbene, translation initiation,
- MeSH
- RNA, Bacterial genetics MeSH
- Escherichia coli genetics MeSH
- RNA, Messenger metabolism MeSH
- Protein Biosynthesis * MeSH
- Gene Expression Regulation, Bacterial MeSH
- Riboswitch * MeSH
- Spectrum Analysis methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- RNA, Bacterial MeSH
- RNA, Messenger MeSH
- Riboswitch * MeSH
Optogenetic tools have revolutionized the study of receptor-mediated processes, but such tools are lacking for RNA-controlled systems. In particular, light-activated regulatory RNAs are needed for spatiotemporal control of gene expression. To fill this gap, we used in vitro selection to isolate a novel riboswitch that selectively binds the trans isoform of a stiff-stilbene (amino-tSS)-a rapidly and reversibly photoisomerizing small molecule. Structural probing revealed that the RNA binds amino-tSS about 100-times stronger than the cis photoisoform (amino-cSS). In vitro and in vivo functional analysis showed that the riboswitch, termed Werewolf-1 (Were-1), inhibits translation of a downstream open reading frame when bound to amino-tSS. Photoisomerization of the ligand with a sub-millisecond pulse of light induced the protein expression. In contrast, amino-cSS supported protein expression, which was inhibited upon photoisomerization to amino-tSS. Reversible photoregulation of gene expression using a genetically encoded RNA will likely facilitate high-resolution spatiotemporal analysis of complex RNA processes.
Department of Chemistry University of California Irvine United States
Department of Molecular Biology and Biochemistry University of California Irvine United States
Department of Organic Chemistry Charles University Prague Czech Republic
Department of Pharmaceutical Sciences University of California Irvine United States
See more in PubMed
Al-Hashimi HM, Walter NG. RNA dynamics: it is about time. Current Opinion in Structural Biology. 2008;18:321–329. doi: 10.1016/j.sbi.2008.04.004. PubMed DOI PMC
Band L, Henner DJ. Bacillus subtilis requires a "stringent" Shine-Dalgarno region for gene expression. Dna. 1984;3:17–21. doi: 10.1089/dna.1.1984.3.17. PubMed DOI
Breaker RR. Prospects for riboswitch discovery and analysis. Molecular Cell. 2011;43:867–879. doi: 10.1016/j.molcel.2011.08.024. PubMed DOI PMC
Breaker RR. Riboswitches and the RNA world. Cold Spring Harbor Perspectives in Biology. 2012;4:a003566. doi: 10.1101/cshperspect.a003566. PubMed DOI PMC
Bremer H, Yuan D. RNA chain growth-rate in Escherichia coli. Journal of Molecular Biology. 1968;38:163–180. doi: 10.1016/0022-2836(68)90404-X. PubMed DOI
Cambridge SB, Geissler D, Calegari F, Anastassiadis K, Hasan MT, Stewart AF, Huttner WB, Hagen V, Bonhoeffer T. Doxycycline-dependent photoactivated gene expression in eukaryotic systems. Nature Methods. 2009;6:527–531. doi: 10.1038/nmeth.1340. PubMed DOI
Chaulk SG, MacMillan AM. Caged RNA: photo-control of a ribozyme reaction. Nucleic Acids Research. 1998;26:3173–3178. doi: 10.1093/nar/26.13.3173. PubMed DOI PMC
Crothers DM. RNA Conformational Dynamics. In: Söll D, Nishimura S, Moore P. B, editors. RNA. Pergamon; 2001. pp. 61–70. DOI
Dhamodharan V, Nomura Y, Dwidar M, Yokobayashi Y. Optochemical control of gene expression by photocaged guanine and riboswitches. Chemical Communications. 2018;54:6181–6183. doi: 10.1039/C8CC02290A. PubMed DOI
Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–822. doi: 10.1038/346818a0. PubMed DOI
Etzel M, Mörl M. Synthetic riboswitches: from plug and pray toward plug and play. Biochemistry. 2017;56:1181–1198. doi: 10.1021/acs.biochem.6b01218. PubMed DOI
Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annual Review of Neuroscience. 2011;34:389–412. doi: 10.1146/annurev-neuro-061010-113817. PubMed DOI PMC
Frieda KL, Block SM. Direct observation of cotranscriptional folding in an Adenine riboswitch. Science. 2012;338:397–400. doi: 10.1126/science.1225722. PubMed DOI PMC
Fuchs RT, Grundy FJ, Henkin TM. S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA. PNAS. 2007;104:4876–4880. doi: 10.1073/pnas.0609956104. PubMed DOI PMC
Greenleaf WJ, Frieda KL, Foster DA, Woodside MT, Block SM. Direct observation of hierarchical folding in single riboswitch aptamers. Science. 2008;319:630–633. doi: 10.1126/science.1151298. PubMed DOI PMC
Grundy FJ, Henkin TM. The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive Bacteria. Molecular Microbiology. 1998;30:737–749. doi: 10.1046/j.1365-2958.1998.01105.x. PubMed DOI
Hallberg ZF, Su Y, Kitto RZ, Hammond MC. Engineering and in vivo applications of riboswitches. Annual Review of Biochemistry. 2017;86:515–539. doi: 10.1146/annurev-biochem-060815-014628. PubMed DOI
Harris DA, Todd GC, Walter NG. Handbook of RNA Biochemistry. Wiley-VCH Verlag GmbH & Co; 2014. Terbium(III) Footprinting as a Probe of RNA Structure and Metal Binding Sites; pp. 255–268.
Hayashi G, Hagihara M, Nakatani K. RNA aptamers that reversibly bind photoresponsive Azobenzene-Containing peptides. Chemistry - a European Journal. 2009;15:424–432. doi: 10.1002/chem.200800936. PubMed DOI
Jäschke A. Genetically encoded RNA photoswitches as tools for the control of gene expression. FEBS Letters. 2012;586:2106–2111. doi: 10.1016/j.febslet.2012.05.040. PubMed DOI
Lee H-W, Robinson SG, Bandyopadhyay S, Mitchell RH, Sen D. Reversible Photo-regulation of a hammerhead ribozyme using a diffusible effector. Journal of Molecular Biology. 2007;371:1163–1173. doi: 10.1016/j.jmb.2007.06.042. PubMed DOI
Liang JC, Bloom RJ, Smolke CD. Engineering biological systems with synthetic RNA molecules. Molecular Cell. 2011;43:915–926. doi: 10.1016/j.molcel.2011.08.023. PubMed DOI PMC
Lorenz R, Bernhart SH, Höner Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL. ViennaRNA package 2.0. Algorithms for Molecular Biology. 2011;6:26. doi: 10.1186/1748-7188-6-26. PubMed DOI PMC
Lotz TS, Halbritter T, Kaiser C, Rudolph MM, Kraus L, Groher F, Steinwand S, Wachtveitl J, Heckel A, Suess B. A light-responsive RNA aptamer for an azobenzene derivative. Nucleic Acids Research. 2019;47:2029–2040. doi: 10.1093/nar/gky1225. PubMed DOI PMC
Lucas T, Schäfer F, Müller P, Eming SA, Heckel A, Dimmeler S. Light-inducible antimiR-92a as a therapeutic strategy to promote skin repair in healing-impaired diabetic mice. Nature Communications. 2017;8:15162. doi: 10.1038/ncomms15162. PubMed DOI PMC
Maaløe O, Kjeldgaard NO. Control of Macromolecular Synthesis a Study of DNA, RNA, and Protein Synthesis in Bacteria. W.A. Benjamin; 1966.
Manor H, Goodman D, Stent GS. RNA chain growth rates in Escherichia coli. Journal of Molecular Biology. 1969;39:1–27. doi: 10.1016/0022-2836(69)90329-5. PubMed DOI
Martini L, Meyer AJ, Ellefson JW, Milligan JN, Forlin M, Ellington AD, Mansy SS. In vitro selection for Small-Molecule-Triggered strand displacement and riboswitch activity. ACS Synthetic Biology. 2015;4:1144–1150. doi: 10.1021/acssynbio.5b00054. PubMed DOI
Martini L, Ellington AD, Mansy SS. An in vitro selection for small molecule induced switching RNA molecules. Methods. 2016;106:51–57. doi: 10.1016/j.ymeth.2016.02.010. PubMed DOI
Möglich A, Moffat K. Engineered photoreceptors as novel optogenetic tools. Photochemical & Photobiological Sciences. 2010;9:1286. doi: 10.1039/c0pp00167h. PubMed DOI
Motta-Mena LB, Reade A, Mallory MJ, Glantz S, Weiner OD, Lynch KW, Gardner KH. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nature Chemical Biology. 2014;10:196–202. doi: 10.1038/nchembio.1430. PubMed DOI PMC
Peng Y, Soper TJ, Woodson SA. RNase footprinting of protein binding sites on an mRNA target of small RNAs. Methods in Molecular Biology. 2012;905:213–224. doi: 10.1007/978-1-61779-949-5_13. PubMed DOI PMC
Quick M, Berndt F, Dobryakov AL, Ioffe IN, Granovsky AA, Knie C, Mahrwald R, Lenoir D, Ernsting NP, Kovalenko SA. Photoisomerization dynamics of stiff-stilbene in solution. The Journal of Physical Chemistry B. 2014;118:1389–1402. doi: 10.1021/jp411656x. PubMed DOI
Regulski EE, Breaker RR. In-Line Probing Analysis of Riboswitches. In: Wilusz J, editor. Post-Transcriptional Gene Regulation. Humana Press; 2008. pp. 53–67. PubMed DOI
Reynolds WF, Gottesfeld JM. Torsional stress induces an S1 nuclease-hypersensitive site within the promoter of the Xenopus laevis oocyte-type 5S RNA gene. PNAS. 1985;82:4018–4022. doi: 10.1073/pnas.82.12.4018. PubMed DOI PMC
Spitale RC, Crisalli P, Flynn RA, Torre EA, Kool ET, Chang HY. RNA SHAPE analysis in living cells. Nature Chemical Biology. 2013;9:18–20. doi: 10.1038/nchembio.1131. PubMed DOI PMC
Szymański W, Wu B, Poloni C, Janssen DB, Feringa BL. Azobenzene photoswitches for Staudinger-Bertozzi ligation. Angewandte Chemie International Edition. 2013a;52:2068–2072. doi: 10.1002/anie.201208596. PubMed DOI
Szymański W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chemical Reviews. 2013b;113:6114–6178. doi: 10.1021/cr300179f. PubMed DOI
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: rna ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–510. doi: 10.1126/science.2200121. PubMed DOI
Uhm H, Kang W, Ha KS, Kang C, Hohng S. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch. PNAS. 2018;115:331–336. doi: 10.1073/pnas.1712983115. PubMed DOI PMC
Vermeulen N, Keeler WJ, Nandakumar K, Leung KT. The bactericidal effect of ultraviolet and visible light on Escherichia coli. Biotechnology and Bioengineering. 2008;99:550–556. doi: 10.1002/bit.21611. PubMed DOI
Vogel U, Jensen KF. The RNA chain elongation rate in Escherichia coli depends on the growth rate. Journal of Bacteriology. 1994;176:2807–2813. doi: 10.1128/JB.176.10.2807-2813.1994. PubMed DOI PMC
Waldeck DH. Photoisomerization dynamics of stilbenes. Chemical Reviews. 1991;91:415–436. doi: 10.1021/cr00003a007. DOI
Walsh S, Gardner L, Deiters A, Williams GJ. Intracellular Light-Activation of riboswitch activity. ChemBioChem. 2014;15:1346–1351. doi: 10.1002/cbic.201400024. PubMed DOI PMC
Weber AM, Kaiser J, Ziegler T, Pilsl S, Renzl C, Sixt L, Pietruschka G, Moniot S, Kakoti A, Juraschitz M, Schrottke S, Lledo Bryant L, Steegborn C, Bittl R, Mayer G, Möglich A. A blue light receptor that mediates RNA binding and translational regulation. Nature Chemical Biology. 2019;15:1085–1092. doi: 10.1038/s41589-019-0346-y. PubMed DOI PMC
Wilkinson KA, Merino EJ, Weeks KM. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nature Protocols. 2006;1:1610–1616. doi: 10.1038/nprot.2006.249. PubMed DOI
Winkler WC, Nahvi A, Sudarsan N, Barrick JE, Breaker RR. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nature Structural & Molecular Biology. 2003;10:701–707. doi: 10.1038/nsb967. PubMed DOI
Wulffen B, Buff MC, Pofahl M, Mayer G, Heckel A. Caged glucosamine-6-phosphate for the light-control of riboswitch activity. Photochem. Photobiol. Sci. 2012;11:489–492. doi: 10.1039/C1PP05242J. PubMed DOI
You M, Jaffrey SR. Designing optogenetically controlled RNA for regulating biological systems. Annals of the New York Academy of Sciences. 2015;1352:13–19. doi: 10.1111/nyas.12660. PubMed DOI PMC
Young DD, Garner RA, Yoder JA, Deiters A. Light-activation of gene function in mammalian cells via ribozymes. Chemical Communications : Chem Comm. 2009;70:568–570. doi: 10.1039/b819375d. PubMed DOI PMC
Young R, Bremer H. Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate. Biochemical Journal. 1976;160:185–194. doi: 10.1042/bj1600185. PubMed DOI PMC
Young DD, Deiters A. Light-regulated RNA-small molecule interactions. ChemBioChem. 2008;9:1225–1228. doi: 10.1002/cbic.200800051. PubMed DOI PMC
Zhang X, Sun W, Chen D, Murchie AIH. Interactions between SAM and the 5' UTR mRNA of the sam1 gene regulate translation in S. pombe. RNA. 2020;26:150–161. doi: 10.1261/rna.072983.119. PubMed DOI PMC
Zhang DY, Winfree E. Control of DNA strand displacement kinetics using toehold exchange. Journal of the American Chemical Society. 2009;131:17303–17314. doi: 10.1021/ja906987s. PubMed DOI