Captivity-induced metabolic programming in an endangered felid: implications for species conservation

. 2020 Feb 27 ; 10 (1) : 3630. [epub] 20200227

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32107441
Odkazy

PubMed 32107441
PubMed Central PMC7046719
DOI 10.1038/s41598-020-60577-3
PII: 10.1038/s41598-020-60577-3
Knihovny.cz E-zdroje

Reintroduction of captive-bred individuals into the wild is an important conservation activity. However, environmental conditions can influence developmental programming, potentially causing metabolic disorders in adults. These effects are investigated here for the first time in an endangered species. Using body weight and feed intake data for Iberian lynx (Lynx pardinus) (n = 22), we compared the growth of captive versus wild born and/or reared individuals. Captive-born individuals gained weight as a function of calorie intake, unlike wild-born individuals. When compared with females reared in the wild, captive-reared females achieved a larger body size, without evidence of obesity. Captivity-associated changes to metabolic programming may compromise survival in the wild if an increased body size incurs a greater energy requirement. Large body size may also confer a competitive advantage over smaller, wild-born individuals, disrupting the social organisation of existing wild populations, and inferring long-term implications for the phenotypic composition of wild populations.

Zobrazit více v PubMed

Gluckman PD, Hanson MA, Spencer HG, Bateson P. Environmental influences during development and their later consequences for health and disease: implications for the interpretation of empirical studies. Proc. R. Soc. B Biol. Sci. 2005;272:671–677. doi: 10.1098/rspb.2004.3001. PubMed DOI PMC

Seki Y, Williams L, Vuguin PM, Charron MJ. Minireview: Epigenetic programming of diabetes and obesity: Animal models. Endocrinology. 2012;153:1031–1038. doi: 10.1210/en.2011-1805. PubMed DOI PMC

Long NM, et al. Maternal obesity and increased nutrient intake before and during gestation in the ewe results in altered growth, adiposity, and glucose tolerance in adult offspring. J. Anim. Sci. 2010;88:3546–3553. doi: 10.2527/jas.2010-3083. PubMed DOI

Lucas A, Baker BA, Desai M, Hales CN. Nutrition in pregnant or lactating rats programs lipid metabolism in the offspring. Br. J. Nutr. 1996;76:605. doi: 10.1079/BJN19960066. PubMed DOI

Zambrano E, Martínez-Samayoa PM, Rodríguez-González GL, Nathanielsz PW. Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats. J. Physiol. 2010;588:1791–1799. doi: 10.1113/jphysiol.2010.190033. PubMed DOI PMC

Reynolds, L. P. et al. Developmental programming: the concept, large animal models, and the key role of uteroplacental vascular development. J. Anim. Sci. 88, E61-72 (2010). PubMed

Gluckman PD, Hanson MA. Living with the past:evolution, development, and patterns of disease. Science (80-.). 2004;305:1733–1736. doi: 10.1126/science.1095292. PubMed DOI

Dunn GA, Bale TL. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology. 2009;150:4999–5009. doi: 10.1210/en.2009-0500. PubMed DOI PMC

Dunn GA, Bale TL. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology. 2011;152:2228–2236. doi: 10.1210/en.2010-1461. PubMed DOI PMC

Whitehouse-Tedd, K. M. et al. Nutritional considerations for captive cheetahs. In Cheetahs: Conservation and Biology (eds. Marker, L., Schmidt-Kuentzel, A. & Boast, L.) 365–383 (Academic Press (Elsevier), 2017).

Clauss, M. & Paglia, D. E. Iron storage disease in captive wild mammals: The comparative evidence. J. Zoo Wildl. Med. 43 (2012). PubMed

Klasing, K. C., Dierenfeld, E. S. & Koutsos, E. A. Avian iron storage disease: variations on a common theme? J. Zoo Wildl. Med. 43 (2012). PubMed

Caravaggi A, Plowman A, Wright D, Bishop C. The composition of ruffed lemur (Varecia spp.) diets in six UK zoological collections, with reference to the problems of obesity and iron storage disease. J. Zoo Aquarium Res. 2018;6:41–49.

Morfeld KA, Meehan CL, Hogan JN, Brown JL. Assessment of body condition in African (Loxodonta africana) and Asian (Elephas maximus) elephants in North American zoos and management practices associated with high body condition scores. PLoS One. 2016;11:1–20. doi: 10.1371/journal.pone.0155146. PubMed DOI PMC

Araki H, Cooper B, Blouin MS. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science (80-.). 2007;318:100–103. doi: 10.1126/science.1145621. PubMed DOI

Lacy RC. Should we select genetic alleles in our conservation breeding programs? Zoo Biol. 2000;19:279–282. doi: 10.1002/1098-2361(2000)19:4<279::AID-ZOO5>3.0.CO;2-V. DOI

Christie MR, Marine ML, French RA, Blouin MS. Genetic adaptation to captivity can occur in a single generation. Proc. Natl. Acad. Sci. USA. 2012;109:238–242. doi: 10.1073/pnas.1111073109. PubMed DOI PMC

Snyder NFR, et al. Limitations of captive breeding in endangered species recovery. Conserv. Biol. 1996;10:338–348. doi: 10.1046/j.1523-1739.1996.10020338.x. DOI

Rabin LA. Maintaining behavioural diversity in captivity for conservation: natural behaviour management. Anim. Welf. 2003;12:85–94.

McPhee ME. Generations in captivity increases behavioral variance: considerations for captive breeding and reintroduction programs. Biol. Conserv. 2004;115:71–77. doi: 10.1016/S0006-3207(03)00095-8. DOI

Taylor PD, Poston L. Developmental programming of obesity in mammals: Developmental programming of obesity. Exp. Physiol. 2007;92:287–298. doi: 10.1113/expphysiol.2005.032854. PubMed DOI

Oostvogels AJJM, et al. Does maternal pre-pregnancy overweight or obesity influence offspring’s growth patterns from birth up to 7 years? The ABCD-study. Early Hum. Dev. 2017;113:62–70. doi: 10.1016/j.earlhumdev.2017.06.002. PubMed DOI

Tamashiro KL, Moran TH. Perinatal environment and its influences on metabolic programming of offspring. Physiol. Behav. 2010;100:560–566. doi: 10.1016/j.physbeh.2010.04.008. PubMed DOI PMC

Aiken CE, Tarry-Adkins JL, Ozanne SE. Transgenerational developmental programming of ovarian reserve. Sci. Rep. 2015;5:16175. doi: 10.1038/srep16175. PubMed DOI PMC

O’Regan HJ, Kitchener AC. The effects of captivity on the morphology of captive, domesticated and feral mammals. Mamm. Rev. 2005;35:215–230. doi: 10.1111/j.1365-2907.2005.00070.x. DOI

Smuts GL, Anderson JL, Austin JC. Age determination of the African lion (Panthera leo) J. Zool. 1978;185:115–146. doi: 10.1111/j.1469-7998.1978.tb03317.x. DOI

Khan I, Dekou V, Hanson M, Poston L, Taylor P. Predictive adaptive responses to maternal high-fat diet prevent endothelial dysfunction but not hypertension in adult rat offspring. Circulation. 2004;110:1097–1102. doi: 10.1161/01.CIR.0000139843.05436.A0. PubMed DOI

Simón MA, et al. Reverse of the decline of the endangered Iberian lynx. Conserv. Biol. 2012;26:731–736. doi: 10.1111/j.1523-1739.2012.01871.x. PubMed DOI

Rodríguez, A. & Calzada, J. Lynx pardinus. The IUCN Red List of Threatened Species. (International Union for Conservation of Nature, 2015).

Rodríguez A, Delibes M. Current range and status of the Iberian lynx Felis pardina Temminck, 1824 in Spain. Biol. Conserv. 1992;61:189–196. doi: 10.1016/0006-3207(92)91115-9. DOI

Palomares F, et al. Possible extinction vortex for a population of Iberian lynx on the verge of extirpation: Extinction vortex in Iberian Lynx. Conserv. Biol. 2012;26:689–697. doi: 10.1111/j.1523-1739.2012.01870.x. PubMed DOI

Lucena-Perez M, et al. Reproductive biology and genealogy in the endangered Iberian lynx: Implications for conservation. Mamm. Biol. 2018;89:7–13. doi: 10.1016/j.mambio.2017.11.006. DOI

Simón Mata, M. A. Censo de las poblaciones de lince Ibérico 2017. In Report for Life+Iberlince Project: Recuperación de la distribucion histórica del lince Ibérico (Lynx pardinus) en España y Portugal 11, http://www.iberlince.eu/images/docs/3_InformesLIFE/Informe_Censo_2017.pdf (2017).

Vargas, A. et al. Interdisciplinary methods in the Iberian lynx (Lynx pardinus) conservation breeding programme. In Iberian lynx ex-situ conservation: an interdisciplinary approach 56–71 (Fundación Biodiversidad, 2009).

Kleinman-Ruiz, D. et al. Genetic evaluation of the Iberian lynx ex situ conservation programme. Heredity (Edinb), 10.1038/s41437-019-0217-z (2019). PubMed PMC

Simón, M. A. et al. Re-introduction of the Iberian lynx, Andalusia, Spain. In Global re-introduction perspectives: 2013. Further case-studies from around the globe. (ed. Soorae, P. S.) 210–214 (IUCN/SSC Re-introduction Specialist Group & UAE Environment Agency, 2013).

Jule KR, Leaver LA, Lea SEG. The effects of captive experience on reintroduction survival in carnivores: A review and analysis. Biol. Conserv. 2008;141:355–363. doi: 10.1016/j.biocon.2007.11.007. DOI

Breitenmoser, U., Breitenmoser-Würsten, C., Carbyn, L. & Funk, S. Assessment of carnivore reintroductions. in Carnivore Conservation - Conservation Biology 5 241–281 (Cambridge University Press, 2001).

Centro de Cría del Lince Ibérico. El Acebuche. Available at, http://lynxexsitu.es/ficheros/boletines_pdf/108/BoletinEAJunio2018_spread.pdf (2018).

Zambrano E, et al. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat: Maternal low protein alters offspring growth and metabolism. J. Physiol. 2006;571:221–230. doi: 10.1113/jphysiol.2005.100313. PubMed DOI PMC

Aldama JJ, Beltran JF, Delibes M. Energy expenditure and prey requirements of free-ranging Iberian lynx in southwestern Spain. J. Wildl. Manage. 1991;55:635. doi: 10.2307/3809512. DOI

Rivas, A. et al. Manual de Manejo del Lince Ibérico en Cautividad - Programa de Conservación Ex-situ del Lince Ibérico (2016).

Allen ME, Ullrey DE. Relationships among nutrition and reproduction and relevance for wild animals. Zoo Biol. 2004;23:475–487. doi: 10.1002/zoo.20029. DOI

Ferreras P, et al. Proximate and ultimate causes of dispersal in the Iberian lynx Lynx pardinus. Behav. Ecol. 2004;15:31–40. doi: 10.1093/beheco/arg097. DOI

Powe CE, Knott CD, Conklin-Brittain N. Infant sex predicts breast milk energy content. Am. J. Hum. Biol. 2010;22:50–54. doi: 10.1002/ajhb.20941. PubMed DOI

Glukhova AA, Naidenko SV. Suckling behavior in Eurasian lynx (Lynx lynx L.) cubs: characteristics and correlation with competitive interactions. Zoo Biol. 2014;33:388–393. PubMed

Vickers MH, et al. The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy. Endocrinology. 2008;149:1906–1913. doi: 10.1210/en.2007-0981. PubMed DOI

Kirk SL, et al. Maternal obesity induced by diet in rats permanently influences centralp processes regulating food intake in offspring. PLoS One. 2009;4:e5870. doi: 10.1371/journal.pone.0005870. PubMed DOI PMC

Ferguson-Smith AC, Patti M-EE. You are what your dad ate. Cell Metab. 2011;13:115–117. doi: 10.1016/j.cmet.2011.01.011. PubMed DOI

Sargent J. Reproductive endocrinology: You are what your grandmother ate - Inherited effects of in utero undernourishment. Nat. Rev. Endocrinol. 2014;10:509. doi: 10.1038/nrendo.2014.127. PubMed DOI

Matthiesen CF, Blache D, Thomsen PD, Tauson A-H. Feeding mink (Neovison vison) a protein-restricted diet during pregnancy induces higher birth weight and altered hepatic gene expression in the F2 offspring. Br. J. Nutr. 2010;104:544–553. doi: 10.1017/S0007114510000802. PubMed DOI

Delibes, M., Rodriguez, A. & Ferreras, P. Action plan for the conservation of the Iberian lynx (Lynx pardinus) in Europe. in Nature and environment, No. 111 44 (Council of Europe Publishing, 2000).

Palomares F. Vegetation structure and prey abundance requirements of the Iberian lynx: implications for the design of reserves and corridors: Characteristics of lynx habitats. J. Appl. Ecol. 2001;38:9–18. doi: 10.1046/j.1365-2664.2001.00565.x. DOI

López-Bao JV, Palomares F, Rodríguez A, Delibes M. Effects of food supplementation on home-range size, reproductive success, productivity and recruitment in a small population of Iberian lynx. Anim. Conserv. 2010;13:35–42. doi: 10.1111/j.1469-1795.2009.00300.x. DOI

López-Bao, J. V., Rodríguez, A. & Palomares, F. Competitive asymmetries in the use of supplementary food by the endangered Iberian lynx (Lynx pardinus). PLoS One4 (2009). PubMed PMC

Beltrán JF, Delibes M. Physical characteristics of Iberian lynxes (Lynx pardinus) from Doñana, southwestern Spain. J. Mammal. 1993;74:852–862. doi: 10.2307/1382423. DOI

Rosvall KA. Intrasexual competition in females: evidence for sexual selection? Behav. Ecol. 2011;22:1131–1140. doi: 10.1093/beheco/arr106. PubMed DOI PMC

Fernández N, Palomares F, Delibes M. The use of breeding dens and kitten development in the Iberian lynx (Lynx pardinus) J. Zool. 2002;258:1–5. doi: 10.1017/S0952836902001140. DOI

Moors PJ. Sexual dimorphism in the body size of mustelids (Carnivora): The roles of food habits and breeding systems. Oikos. 1980;34:147–158. doi: 10.2307/3544175. DOI

O’Donoghue, M. et al. Cyclical dynamics and behaviour of Canada lynx in northern Canada. in Biology and Conservation of Wild Felids (Oxford University Press, 2010).

Jędrzejewska W, Jędrzejewska B, Schmidt K, Okarma H, Kowalczyk R. Ekologia Rysia (Lynx Lynx) W Puszczy Białowieskiej. Wiadomości Ekol. 1999;45:17–41.

Simón, M. A. et al. Conservation of free-ranging Iberian lynx (Lynx pardinus) in Andalusia. in Iberian lynx ex-situ conservation: an interdisciplinary approach 42–55 (Fundación Biodiversidad, 2009).

Yerga J, et al. Lactation and suckling behavior in the Iberian lynx. Zoo Biol. 2016;35:216–221. doi: 10.1002/zoo.21286. PubMed DOI

Rivas, A. et al. Manual de Crianza Artificial de Cachorros de Lince Ibérico Programa de Conservación Ex-situ del Lince Ibérico (2015).

Asensio, V. et al. Manual sanitario del lince Ibérico - Grupo de manejo sanitario del lince Ibérico (2014).

Burkholder WJ. Use of body condition scores in clinical assessment of the provision of optimal nutrition. J. Am. Vet. Med. Assoc. 2000;217:650–654. doi: 10.2460/javma.2000.217.650. PubMed DOI

Laflamme DP. Development and validation of a body condition score system for cats: A clinical tool. Feline Pract. 1997;25:13–18.

Delibes M. Feeding ecology of Spanish lynx in the Coto Doñana. Acta Theriol. (Warsz). 1980;25:309–324. doi: 10.4098/AT.arch.80-28. DOI

National Research Council. Nutrient Requirements of Dogs and Cats. (National Academy of Sciences, 2006).

National Research Council. Nutrient Requirements of Cats. (The National Academies Press, 1986).

Agence Nationale de Securite Sanitaire Alimentation, Environement, T. Ciqual French Food Database. Available at, https://ciqual.anses.fr/ (Accessed: 1st December 2016).

Agencia Española de Seguridad Alimentaria y Nutrición. BEDCA Spanish Food Composition Database. Available at, http://www.aecosan.msssi.gob.es/en/AECOSAN/web/seguridad_alimentaria/subseccion/composicion_alimentos_BD.htm (Accessed: 1st December 2016).

Field RA, Riley ML, Mello FC, Corbridge JH, Kotula AW. Bone composition in cattle, pigs, sheep and poultry. J. Anim. Sci. 1974;39:493–499. doi: 10.2527/jas1974.393493x. PubMed DOI

Depauw S, et al. Blood values of adult captive cheetahs (Acinonyx jubatus) fed either supplemented beef or whole rabbit carcasses. Zoo Biol. 2012;31:629–41. doi: 10.1002/zoo.20427. PubMed DOI

Gondret F, Larzul C, Combes S, de Rochambeau H. Carcass composition, bone mechanical properties, and meat quality traits in relation to growth rate in rabbits. J. Anim. Sci. 2005;83:1526–1535. doi: 10.2527/2005.8371526x. PubMed DOI

Marti, I. & Ryser-Degiorgis, M. Morphometric characteristics of free-ranging Eurasian lynx Lynx lynx in Switzerland and their suitability for age estimation. Wildlife Biol, 10.2981/wlb.00432 (2018).

Marker LL, Dickman AJ. Morphology, physical condition, and growth of the cheetah (Acinonyx jubatus jubatus) J. Mammal. 2003;84:840–850. doi: 10.1644/BRB-036. DOI

Santarossa A, Parr JM, Verbrugghe A. The importance of assessing body composition of dogs and cats and methods available for use in clinical practice. J. Am. Vet. Med. Assoc. 2017;251:521–529. doi: 10.2460/javma.251.5.521. PubMed DOI

Burnham KP, Anderson DR. P values are only an index to evidence: 20th vs. 21st-century statistical science. Ecology. 2014;95:627–630. doi: 10.1890/13-1066.1. PubMed DOI

Nuzzo R. Statistical errors: P values, the ‘gold’ standard of statistical validity, are not as reliable as many scientists assume. Nature. 2014;506:150–152. doi: 10.1038/506150a. PubMed DOI

Wasserstein RL, Lazar NA. The ASA Statement on p-values: Context. process, and purpose. Am. Stat. 2016;70:129–133. doi: 10.1080/00031305.2016.1154108. DOI

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria Available at, https://www.r-project.org/ (2019).

Rue H, et al. Bayesian computing with INLA: a review. Annu. Rev. Stat. its Appl. 2017;4:395–421. doi: 10.1146/annurev-statistics-060116-054045. DOI

Vehtari A, Gelman A, Gabry J. Practical Bayesian model evaluation using leave-oneout cross-validation and WAIC. Stat. Comput. 2017;27:1413–1432. doi: 10.1007/s11222-016-9696-4. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...