Editorial: Application of Cytometry in Primary Immunodeficiencies
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu úvodníky, úvodní články, práce podpořená grantem
PubMed
32265921
PubMed Central
PMC7096470
DOI
10.3389/fimmu.2020.00463
Knihovny.cz E-zdroje
- Klíčová slova
- diagnosis, flow cytometry, functional studies, immunophenotyping, primary immunodeficency,
- MeSH
- imunofenotypizace metody MeSH
- lidé MeSH
- primární imunodeficience diagnóza MeSH
- průtoková cytometrie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- úvodní články MeSH
- úvodníky MeSH
Center for Chronic Immunodeficiency Medical Center University of Freiburg Freiburg Germany
Department of Pediatrics Leiden University Medical Center Leiden Netherlands
Department of Rheumatology and Clinical Immunology University Hospital Freiburg Freiburg Germany
Editorial on the Research Topic Application of Cytometry in Primary Immunodeficiencies PubMed
Zobrazit více v PubMed
Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human inborn errors of immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. (in press) 10.1007/s10875-019-00737-x PubMed DOI PMC
Bruton OC. Agammaglobulinemia. Pediatrics. (1952) 9:722–8. PubMed
Cooper MD, Peterson RD, Good RA. Delineation of the thymic and bursal lymphoid systems in the chicken. Nature. (1965) 205:143–6. 10.1038/205143a0 PubMed DOI
Kalina T. Reproducibility of flow cytometry through standardization: opportunities and challenges. Cytometry A. (2020) 97:137–47. 10.1002/cyto.a.23901 PubMed DOI
Chandra A, Zhang F, Gilmour KC, Webster D, Plagnol V, Kumararatne DS, et al. . Common variable immunodeficiency and natural killer cell lymphopenia caused by Ets-binding site mutation in the IL-2 receptor γ (IL2RG) gene promoter. J Allergy Clin Immunol. (2016) 137:940–2.e4. 10.1016/j.jaci.2015.08.049 PubMed DOI PMC
Malphettes M, Gérard L, Carmagnat M, Mouillot G, Vince N, Boutboul D, et al. . Late-onset combined immune deficiency: a subset of common variable immunodeficiency with severe T cell defect. Clin Infect Dis. (2009) 49:1329–38. 10.1086/606059 PubMed DOI
Yu H, Zhang VW, Stray-Pedersen A, Hanson IC, Forbes LR, de la Morena MT, et al. . Rapid molecular diagnostics of severe primary immunodeficiency determined by using targeted next-generation sequencing. J Allergy Clin Immunol. (2016) 138:1142–51.e2. 10.1016/j.jaci.2016.05.035 PubMed DOI
Nijman IJ, Van Montfrans JM, Hoogstraat M, Boes ML, Van De Corput L, Renner ED, et al. . Targeted next-generation sequencing: a novel diagnostic tool for primary immunodeficiencies. J Allergy Clin Immunol. (2014) 133:529–34.e1. 10.1016/j.jaci.2013.08.032 PubMed DOI
Conley ME, Casanova JL. Discovery of single-gene inborn errors of immunity by next generation sequencing. Curr Opin Immunol. (2014) 30:17–23. 10.1016/j.coi.2014.05.004 PubMed DOI PMC
Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. . Phenotypic classification for primary immunodeficiencies. J Clin Immunol. (2018) 38:129–43. 10.1007/s10875-017-0465-8 PubMed DOI PMC
Glier H, Novakova M, te Marvelde J, Bijkerk A, Morf D, Thurner D, et al. . Comments on EuroFlow standard operating procedures for instrument setup and compensation for BD FACS Canto II, Navios and BD FACS Lyric instruments. J Immunol Methods. (2019) 112680. 10.1016/j.jim.2019.112680 PubMed DOI
Haddad E. STAT3: too much may be worse than not enough!. Blood. (2015) 125:583–5. 10.1182/blood-2014-11-610592 PubMed DOI
Bloomfield M, Kanderová V, Paračková Z, Vrabcová P, Svaton M, Fronková E, et al. . Utility of ruxolitinib in a child with chronic mucocutaneous candidiasis caused by a novel STAT1 gain-of-function mutation. J Clin Immunol. (2018) 38:589–601. 10.1007/s10875-018-0519-6 PubMed DOI
Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawakami B, et al. . Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl Environ Microbiol. (1997) 63:4504–10. PubMed PMC
Van Der Strate B, Longdin R, Geerlings M, Bachmayer N, Cavallin M, Litwin V, et al. Best practices in performing flow cytometry in a regulated environment: feedback from experience within the European Bioanalysis Forum. Bioanalysis. (2017) 9:1253–64. 10.4155/bio-2017-0093 PubMed DOI
Selliah N, Eck S, Green C, Oldaker T, Stewart J, Vitaliti A, et al. . Flow cytometry method validation protocols. Curr Protoc Cytom. (2019) 87:e53. 10.1002/cpcy.53 PubMed DOI
Lee JA, Spidlen J, Boyce K, Cai J, Crosbie N, Dalphin M, et al. . MIFlowCyt: the minimum information about a Flow Cytometry Experiment. Cytometry A. (2008) 73:926–30. 10.1002/cyto.a.20623 PubMed DOI PMC
Roederer M, Tárnok A. OMIPs–Orchestrating multiplexity in polychromatic science. Cytometry A. (2010) 77:811–2. 10.1002/cyto.a.20959 PubMed DOI
Abraham RS, Aubert G. Flow cytometry, a versatile tool for diagnosis and monitoring of primary immunodeficiencies. Clin Vaccine Immunol. (2016) 23:254–71. 10.1128/CVI.00001-16 PubMed DOI PMC
Richardson AM, Moyer AM, Hasadsri L, Abraham RS. Diagnostic tools for inborn errors of human immunity (primary immunodeficiencies and immune dysregulatory diseases). Curr Allergy Asthma Rep. (2018) 18:19. 10.1007/s11882-018-0770-1 PubMed DOI
Cousin MA, Smith MJ, Sigafoos AN, Jin JJ, Murphree MI, Boczek NJ, et al. . Utility of DNA, RNA, protein, and functional approaches to solve cryptic immunodeficiencies. J Clin Immunol. (2018) 38:307–19. 10.1007/s10875-018-0499-6 PubMed DOI
Hou TZ, Verma N, Wanders J, Kennedy A, Soskic B, Janman D, et al. . Identifying functional defects in patients with immune dysregulation due to LRBA and CTLA-4 mutations. Blood. (2017) 129:1458–68. 10.1182/blood-2016-10-745174 PubMed DOI PMC
Takeda AJ, Zhang Y, Dornan GL, Siempelkamp BD, Jenkins ML, Matthews HF, et al. . Novel PIK3CD mutations affecting N-terminal residues of p110δ cause activated PI3Kδ syndrome (APDS) in humans. J Allergy Clin Immunol. (2017) 140:1152–6.e10. 10.1016/j.jaci.2017.03.026 PubMed DOI PMC