Rocket Science: The Effect of Spaceflight on Germination Physiology, Ageing, and Transcriptome of Eruca sativa Seeds
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BB/M00192X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
RE1697/8-1
Deutsche Forschungsgemeinschaft
BB/R021147/1
Biotechnology and Biological Sciences Research Council - United Kingdom
TSB132858
Innovate UK
RocketScience
Research Strategy Fund Royal Holloway
PubMed
32344775
PubMed Central
PMC7235897
DOI
10.3390/life10040049
PII: life10040049
Knihovny.cz E-zdroje
- Klíčová slova
- climate change, food security, low Earth orbit, salad rocket (Eruca sativa), seed ageing, seed germination, seed storage, seed vigor, seeds in space, spaceflight transcriptomes,
- Publikační typ
- časopisecké články MeSH
In the 'Rocket Science' project, storage of Eruca sativa (salad rocket) seeds for six months on board the International Space Station resulted in delayed seedling establishment. Here we investigated the physiological and molecular mechanisms underpinning the spaceflight effects on dry seeds. We found that 'Space' seed germination vigor was reduced, and ageing sensitivity increased, but the spaceflight did not compromise seed viability and the development of normal seedlings. Comparative analysis of the transcriptomes (using RNAseq) in dry seeds and upon controlled artificial ageing treatment (CAAT) revealed differentially expressed genes (DEGs) associated with spaceflight and ageing. DEG categories enriched by spaceflight and CAAT included transcription and translation with reduced transcript abundances for 40S and 60S ribosomal subunit genes. Among the 'spaceflight-up' DEGs were heat shock proteins (HSPs), DNAJ-related chaperones, a heat shock factor (HSFA7a-like), and components of several DNA repair pathways (e.g., ATM, DNA ligase 1). The 'response to radiation' category was especially enriched in 'spaceflight-up' DEGs including HSPs, catalases, and the transcription factor HY5. The major finding from the physiological and transcriptome analysis is that spaceflight causes vigor loss and partial ageing during air-dry seed storage, for which space environmental factors and consequences for seed storage during spaceflights are discussed.
Department of Biological Sciences Royal Holloway University of London Egham TW20 0EX UK
Official Seed Testing Station for Scotland SASA Edinburgh EH12 9FJ UK
Plant Cell Biology Faculty of Biology University of Marburg 35043 Marburg Germany
Science Department Royal Horticultural Society Woking Surrey GU23 6QB UK
Zobrazit více v PubMed
Visscher A.M., Seal C.E., Newton R.J., Frances A.L., Pritchard H.W. Dry seeds and environmental extremes: Consequences for seed lifespan and germination. Funct. Plant Biol. 2016;43:656–668. doi: 10.1071/FP15275. PubMed DOI
Vandenbrink J.P., Kiss J.Z. Space, the final frontier: A critical review of recent experiments performed in microgravity. Plant Sci. 2016;243:115–119. doi: 10.1016/j.plantsci.2015.11.004. PubMed DOI PMC
Paul A.L., Wheeler R.M., Levine H.G., Ferl R.J. Fundamental plant biology enabled by the space shuttle. Am. J. Bot. 2013;100:226–234. doi: 10.3732/ajb.1200338. PubMed DOI
Kordyum E., Chapman D., Brykova V. Plant cell development and aging may accelerate in microgravity. Acta Astronaut. 2019;157:157–161. doi: 10.1016/j.actaastro.2018.12.036. DOI
Musgrave M.E. Seeds in space. Seed Sci. Res. 2002;12:1–16. doi: 10.1079/SSR200193. DOI
Cannon K.M., Britt D.T. Feeding one million people on Mars. New Space. 2019;7:245–254. doi: 10.1089/space.2019.0018. DOI
Wheeler R.M. Agriculture for space: People and places paving the way. Open Agric. 2017;2:14–32. doi: 10.1515/opag-2017-0002. DOI
Paul A.L., Sng N.J., Zupanska A.K., Krishnamurthy A., Schultz E.R., Ferl R.J. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight? PLoS ONE. 2017;12:e0180186. doi: 10.1371/journal.pone.0180186. PubMed DOI PMC
Herranz R., Vandenbrink J.P., Villacampa A., Manzano A., Poehlman W.L., Feltus F.A., Kiss J.Z., Medina F.J. RNAseq analysis of the response of Arabidopsis thaliana to fractional gravity under blue-light stimulation during spaceflight. Front. Plant Sci. 2019;10:1529. doi: 10.3389/fpls.2019.01529. PubMed DOI PMC
Zhou M.Q., Sng N.J., LeFrois C.E., Paul A.L., Ferl R.J. Epigenomics in an extraterrestrial environment: Organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thaliana. BMC Genom. 2019;20:205. doi: 10.1186/s12864-019-5554-z. PubMed DOI PMC
Zupanska A.K., LeFrois C., Ferl R.J., Paul A.L. HSFA2 functions in the physiological adaptation of undifferentiated plant cells to spaceflight. Int. J. Mol. Sci. 2019;20:390. doi: 10.3390/ijms20020390. PubMed DOI PMC
El-Nakhel C., Giordano M., Pannico A., Carillo P., Fusco G.M., De Pascale S., Rouphael Y. Cultivar-specific performance and qualitative descriptors for butterhead Salanova lettuce produced in closed soilless cultivation as a candidate salad crop for human life Support in Space. Life. 2019;9:61. doi: 10.3390/life9030061. PubMed DOI PMC
Wolff S.A., Palma C.F., Marcelis L., Kittang Jost A.I., van Delden S.H. Testing new concepts for crop cultivation in space: Effects of rooting volume and nitrogen availability. Life. 2018;8:45. doi: 10.3390/life8040045. PubMed DOI PMC
Odeh R., Guy C.L. Gardening for therapeutic people-plant interactions during long-duration space missions. Open Agric. 2017;2:1–13. doi: 10.1515/opag-2017-0001. DOI
Colla G., Battistelli A., Proietti S., Moscatello S., Rouphael Y., Cardarelli M., Casucci M. Rocket seedling production on the International Space Station: Growth and Nutritional properties. Microgravity Sci. Technol. 2007;19:118–121. doi: 10.1007/BF02919465. DOI
Zabel P., Bamsey M., Schubert D., Tajmar M. Review and analysis of over 40 years of space plant growth systems. Life Sci. Space Res. 2016;10:1–16. doi: 10.1016/j.lssr.2016.06.004. PubMed DOI
Shen Y.Z., Guo S.S., Zhao P.S., Wang L.J., Wang X.X., Li J., Bian Q. Research on lettuce growth technology onboard Chinese Tiangong II Spacelab. Acta Astronaut. 2018;144:97–102. doi: 10.1016/j.actaastro.2017.11.007. DOI
Weitbrecht K., Müller K., Leubner-Metzger G. First off the mark: Early seed germination. J. Exp. Bot. 2011;62:3289–3309. doi: 10.1093/jxb/err030. PubMed DOI
Nagel M., Börner A. The longevity of crop seeds stored under ambient conditions. Seed Sci. Res. 2010;20:1–12. doi: 10.1017/S0960258509990213. DOI
Kranner I., Minibayeva F.V., Beckett R.P., Seal C.E. What is stress? Concepts, definitions and applications in seed science. New Phytol. 2010;188:655–673. doi: 10.1111/j.1469-8137.2010.03461.x. PubMed DOI
Sano N., Rajjou L., North H.M., Debeaujon I., Marion-Poll A., Seo M. Staying alive: Molecular aspects of seed longevity. Plant Cell Physiol. 2016;57:660–674. doi: 10.1093/pcp/pcv186. PubMed DOI
Bradford K.J., Dahal P., van Asbrouck J., Kunusoth K., Bello P., Thompson J., Wu F. The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends Food Sci. Technol. 2018;71:84–93. doi: 10.1016/j.tifs.2017.11.002. DOI
Fleming M.B., Patterson E.L., Reeves P.A., Richards C.M., Gaines T.A., Walters C. Exploring the fate of mRNA in aging seeds: Protection, destruction, or slow decay? J. Exp. Bot. 2018;69:4309–4321. doi: 10.1093/jxb/ery215. PubMed DOI PMC
Fleming M.B., Hill L.M., Walters C. The kinetics of ageing in dry-stored seeds: A comparison of viability loss and RNA degradation in unique legacy seed collections. Ann. Bot. 2019;123:1133–1146. doi: 10.1093/aob/mcy217. PubMed DOI PMC
Waterworth W.M., Bray C.M., West C.E. The importance of safeguarding genome integrity in germination and seed longevity. J. Exp. Bot. 2015;66:3549–3558. doi: 10.1093/jxb/erv080. PubMed DOI
Mene-Saffrane L., Jones A.D., DellaPenna D. Plastochromanol-8 and tocopherols are essential lipid-soluble antioxidants during seed desiccation and quiescence in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2010;107:17815–17820. doi: 10.1073/pnas.1006971107. PubMed DOI PMC
Steinbrecher T., Leubner-Metzger G. The biomechanics of seed germination. J. Exp. Bot. 2017;68:765–783. doi: 10.1093/jxb/erw428. PubMed DOI
Nicholson W.L., Ricco A.J. Nanosatellites for biology in space: In situ measurement of Bacillus subtilis spore germination and growth after 6 months in Low Earth Orbit on the O/OREOS mission. Life. 2019;10:1. doi: 10.3390/life10010001. PubMed DOI PMC
Weronika E., Lukasz K. Tardigrades in space research-past and future. Orig. Life Evol. B. 2017;47:545–553. doi: 10.1007/s11084-016-9522-1. PubMed DOI PMC
Tepfer D., Leach S. Survival and DNA damage in plant seeds exposed for 558 and 682 days outside the International Space Station. Astrobiology. 2017;17:205–215. doi: 10.1089/ast.2015.1457. PubMed DOI PMC
Tepfer D., Zalar A., Leach S. Survival of plant seeds, their UV screens, and nptII DNA for 18 months outside the International Space Station. Astrobiology. 2012;12:517–528. doi: 10.1089/ast.2011.0744. PubMed DOI
Zimmermann M.W., Gartenbach K.E., Kranz A.R. First radiobiological results of Ldef-1 experiment-A0015 with Arabidopsis seed embryos and Sordaria fungus spores. Adv. Space Res. 1994;14:47–51. doi: 10.1016/0273-1177(94)90449-9. PubMed DOI
Sugimoto M., Oono Y., Kawahara Y., Gusev O., Maekawa M., Matsumoto T., Levinskikh M., Sychev V., Novikova N., Grigoriev A. Gene expression of rice seeds surviving 13- and 20-month exposure to space environment. Life Sci. Space Res. 2016;11:10–17. doi: 10.1016/j.lssr.2016.10.001. PubMed DOI
Cui J., Xia W.Y., Wei S.Y., Zhang M., Wang W., Zeng D.Y., Liu M.Y., Sun Y.Q., Lu W.H. Photosynthetic performance of rice seedlings originated from seeds exposed to spaceflight conditions. Photochem. Photobiol. 2019;95:1205–1212. doi: 10.1111/php.13097. PubMed DOI
Xiong H.C., Guo H.J., Xie Y.D., Zhao L.S., Gu J.Y., Zhao S.R., Li J.H., Liu L.X. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Sci. Rep. 2017;7:2731. doi: 10.1038/s41598-017-03024-0. PubMed DOI PMC
RHS . Rocket Science: Our Voyage to Discovery. Royal Horticultural Society; London, UK: 2016. [(accessed on 31 March 2020)]. Available online: https://schoolgardening.rhs.org.uk/getmedia/a3385b8e-0eaf-4953-8d90-bc163ff0f982/Final-Rocket-Science-Report-Low-Res.
Mira S., Estrelles E., Gonzalez-Benito M.E. Effect of water content and temperature on seed longevity of seven Brassicaceae species after 5 years of storage. Plant Biol. 2015;17:153–162. doi: 10.1111/plb.12183. PubMed DOI
Matthews S., Powell A. Electrical conductivity vigour test: Physiological basis and use. Seed Test. Int. 2006;131:32–35.
Graeber K., Linkies A., Wood A.T., Leubner-Metzger G. A guideline to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. Plant Cell. 2011;23:2045–2063. doi: 10.1105/tpc.111.084103. PubMed DOI PMC
Andrews S. Bioinformatics tools of the Babraham Institute. [(accessed on 10 September 2019)];2019 Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Wu T.D., Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics (Oxford, England) 2010;26:873–881. doi: 10.1093/bioinformatics/btq057. PubMed DOI PMC
Buchfink B., Xie C., Huson D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI
Huson D.H., Auch A.F., Qi J., Schuster S.C. MEGAN analysis of metagenomic data. Genome Res. 2007;17:377–386. doi: 10.1101/gr.5969107. PubMed DOI PMC
Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Simao F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics (Oxford, England) 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
TimeLogic Tera-BLAST, Active Motif Inc., Carlsbad (CA, USA) [(accessed on 10 September 2019)];2019 Available online: http://www.timelogic.com/catalog/757/tera-blast.
Conesa A., Gotz S., Garcia-Gomez J.M., Terol J., Talon M., Robles M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics (Oxford, England) 2005;21:3674–3676. doi: 10.1093/bioinformatics/bti610. PubMed DOI
Liao Y., Smyth G.K., Shi W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics (Oxford, England) 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Tarazona S., Furio-Tari P., Turra D., Di Pietro A., Nueda M.J., Ferrer A., Conesa A. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 2015;43 doi: 10.1093/nar/gkv711. PubMed DOI PMC
Chamberlain S., Szocs E., Boettiger C., Ram K., Bartomeus I., Baumgartner J., Foster Z., O’Donnell J., Oksanen J. Taxize: Taxonomic Information from around the Web. R package Version 0.9.0. [(accessed on 10 September 2019)];2017 Available online: https://github.com/ropensci/taxize.
Alexa A., Rahnenfuhrer J. topGO: Enrichment Analysis for Gene Ontology. R package version 2.38.1. [(accessed on 20 December 2019)];2019 Available online: https://www.mpi-inf.mpg.de/home/
Morpheus Heat Map Tool. [(accessed on 20 December 2019)];2019 Available online: https://software.broadinstitute.org/morpheus/
Drapal M., Rossel G., Heider B., Fraser P.D. Metabolic diversity in sweet potato (Ipomoea batatas, Lam.) leaves and storage roots. Hortic. Res. Engl. 2019;6:2. doi: 10.1038/s41438-018-0075-5. PubMed DOI PMC
Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Canadian J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI
Fraser P.D., Pinto M.E., Holloway D.E., Bramley P.M. Technical advance: Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J. 2000;24:551–558. doi: 10.1046/j.1365-313x.2000.00896.x. PubMed DOI
Leubner-Metzger G. ß-1,3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Plant J. 2005;41:133–145. doi: 10.1111/j.1365-313X.2004.02284.x. PubMed DOI
Finch-Savage W.E., Bassel G.W. Seed vigour and crop establishment: Extending performance beyond adaptation. J. Exp. Bot. 2016;67:567–591. doi: 10.1093/jxb/erv490. PubMed DOI
Ohtani M., Demura T., Sugiyama M. Arabidopsis ROOT INITIATION DEFECTIVE1, a DEAH-box RNA helicase involved in pre-mRNA splicing, is essential for plant development. Plant Cell. 2013;25:2056–2069. doi: 10.1105/tpc.113.111922. PubMed DOI PMC
Kozeko L., Talalaiev O., Neimash V., Povarchuk V. A protective role of HSP90 chaperone in gamma-irradiated Arabidopsis thaliana seeds. Life Sci. Space Res. 2015;6:51–58. doi: 10.1016/j.lssr.2015.07.002. PubMed DOI
Meyer A.E., Hoover L.A., Craig E.A. The cytosolic J-protein, Jjj1, and Rei1 function in the removal of the pre-60 S subunit factor Arx1. J. Boil. Chem. 2010;285:961–968. doi: 10.1074/jbc.M109.038349. PubMed DOI PMC
Waterworth W.M., Footitt S., Bray C.M., Finch-Savage W.E., West C.E. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds. Proc. Natl. Acad. Sci. USA. 2016;113:9647–9652. doi: 10.1073/pnas.1608829113. PubMed DOI PMC
Waterworth W.M., Bray C.M., West C.E. Seeds and the art of genome maintenance. Front. Plant Sci. 2019;10:706. doi: 10.3389/fpls.2019.00706. PubMed DOI PMC
Friesner J., Britt A.B. Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J. 2003;34:427–440. doi: 10.1046/j.1365-313X.2003.01738.x. PubMed DOI
Costa R.M.A., Morgante P.G., Berra C.M., Nakabashi M., Bruneau D., Bouchez D., Sweder K.S., Van Sluys M.A., Menck C.F.M. The participation of AtXPB1, the XPB/RAD25 homologue gene from Arabidopsis thaliana, in DNA repair and plant development. Plant J. 2001;28:385–395. doi: 10.1046/j.1365-313X.2001.01162.x. PubMed DOI
Manova V., Gruszka D. DNA damage and repair in plants-from models to crops. Front. Plant Sci. 2015;6:885. doi: 10.3389/fpls.2015.00885. PubMed DOI PMC
Waterworth W.M., Masnavi G., Bhardwaj R.M., Jiang Q., Bray C.M., West C.E. A plant DNA ligase is an important determinant of seed longevity. Plant J. 2010;63:848–860. doi: 10.1111/j.1365-313X.2010.04285.x. PubMed DOI
Heijde M., Ulm R. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci. 2012;17:230–237. doi: 10.1016/j.tplants.2012.01.007. PubMed DOI
Tossi V.E., Regalado J.J., Iannicelli J., Laino L.E., Burrieza H.P., Escandon A.S., Pitta-Alvarez S.I. Beyond Arabidopsis: Differential UV-B response mediated by UVR8 in diverse species. Front. Plant Sci. 2019;10:780. doi: 10.3389/fpls.2019.00780. PubMed DOI PMC
Gangappa S.N., Botto J.F. The multifaceted roles of HY5 in plant gowth and development. Mol. Plant. 2016;9:1353–1365. doi: 10.1016/j.molp.2016.07.002. PubMed DOI
Bailly C. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 2004;14:93–107. doi: 10.1079/SSR2004159. DOI
Chen H., Osuna D., Colville L., Lorenzo O., Graeber K., Kuster H., Leubner-Metzger G., Kranner I. Transcriptome-wide mapping of pea seed ageing reveals a pivotal role for genes related to oxidative stress and programmed cell death. PLoS ONE. 2013;8:e78471. doi: 10.1371/journal.pone.0078471. PubMed DOI PMC
Kibinza S., Bazin J., Bailly C., Farrant J.M., Corbineau F., El-Maarouf-Bouteau H. Catalase is a key enzyme in seed recovery from ageing during priming. Plant Sci. 2011;181:309–315. doi: 10.1016/j.plantsci.2011.06.003. PubMed DOI
Benton E.R., Benton E. Space radiation dosimetry in low-Earth orbit and beyond. Nucl. Instruments Methods Phys. Res. Sect. B. 2001;184:255–294. doi: 10.1016/S0168-583X(01)00748-0. PubMed DOI
Kerr R.A. Radiation will make astronauts’ trip to Mars even riskier. Science. 2013;340:1031. doi: 10.1126/science.340.6136.1031. PubMed DOI
Bell L., Wagstaff C. Rocket science: A review of phytochemical & health-related research in Eruca & Diplotaxis species. Food Chem. 2019;1:100002. doi: 10.1016/j.fochx.2018.100002. PubMed DOI PMC
Gu R.L., Huang R., Jia G.Y., Yuan Z.P., Ren L.S., Li L., Wang J.H. Effect of mechanical threshing on damage and vigor of maize seed threshed at different moisture contents. J. Integr. Agric. 2019;18:1571–1578. doi: 10.1016/S2095-3119(18)62026-X. DOI
Uchida A., Yamamoto K.T. Effects of mechanical vibration on seed germination of Arabidopsis thaliana (L.) Heynh. Plant Cell Physiol. 2002;43:647–651. doi: 10.1093/pcp/pcf079. PubMed DOI
Chancellor J.C., Scott G.B., Sutton J.P. Space radiation: The number one risk to astronaut health beyond Low Earth Orbit. Life. 2014;4:491–510. doi: 10.3390/life4030491. PubMed DOI PMC
Akopova A.B., Manaseryan M.M., Melkonyan A.A., Tatikyan S.S., Potapov Y. Radiation measurement on the International Space Station. Radiat. Meas. 2005;39:225–228. doi: 10.1016/j.radmeas.2004.06.013. PubMed DOI
De Micco V., Paradiso R., Aronne G., De Pascale S., Quarto M., Arena C. Leaf anatomy and photochemical behaviour of Solanum lycopersicum L. plants from seeds irradiated with low-LET ionising radiation. Sci. World J. 2014;2014:428141. doi: 10.1155/2014/428141. PubMed DOI PMC
Norfadzrin F., Ahmed O.H., Shaharudin S., Abdul Rahman D. A preliminary study on gamma radiosensitivity of tomato (Lycopersicon esculentum) and okra (Abelmoschus esculentus) Int. J. Agric. Res. 2007;2:620–625. doi: 10.3923/ijar.2007.620.625. DOI
Marcu D., Damian G., Cosma C., Cristea V. Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays) J. Boil. Phys. 2013;39:625–634. doi: 10.1007/s10867-013-9322-z. PubMed DOI PMC
Kahn B.A., Stoffella P.J. No evidence of adverse effects on germination, emergence, and fruit yield due to space exposure of tomato seeds. J. Am. Soc. Hortic. Sci. 1996;121:414–418. doi: 10.21273/JASHS.121.3.414. PubMed DOI
Mei M., Qiu Y., He Y., Bucker H., Yang C.H. Mutational effects of space-flight on Zea mays seeds. Adv. Space Res. 1994;14:33–39. doi: 10.1016/0273-1177(94)90447-2. PubMed DOI
Nechitailo G.S., Lu J.Y., Xue H.A., Pan Y., Tang C.Q., Liu M. Influence of long term exposure to space flight on tomato seeds. Adv. Space Res. 2005;36:1329–1333. doi: 10.1016/j.asr.2005.06.043. DOI
Iglesias-Fernandez R., Rodriguez-Gacio M.D., Matilla A.J. Progress in research on dry afterripening. Seed Sci. Res. 2011;21:69–80. doi: 10.1017/S096025851000036X. DOI
Bazin J., Langlade N., Vincourt P., Arribat S., Balzergue S., El-Maarouf-Bouteau H., Bailly C. Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell. 2011;23:2196–2208. doi: 10.1105/tpc.111.086694. PubMed DOI PMC
Nelson S.K., Ariizumi T., Steber C.M. Biology in the dry seed: Transcriptome changes associated with dry seed dormancy and dormancy loss in the Arabidopsis GA-insensitive sleepy1-2 mutant. Front. Plant Sci. 2017;8:2158. doi: 10.3389/fpls.2017.02158. PubMed DOI PMC
Mei T., Yang G., Quan Y., Wang W.K., Zhang W.M., Xue J.M., Wu L.J., Gu H.Y., Schettino G., Wang Y.G. Oxidative metabolism involved in non-targeted effects induced by proton radiation in intact arabidopsis seeds. J. Radiat. Res. 2011;52:159–167. doi: 10.1269/jrr.10087. PubMed DOI
Kim S.H., Song M., Lee K.J., Hwang S.G., Jang C.S., Kim J.B., Kim S.H., Ha B.K., Kang S.Y., Kim D.S. Genome-wide transcriptome profiling of ROS scavenging and signal transduction pathways in rice (Oryza sativa L.) in response to different types of ionizing radiation. Mol. Boil. Rep. 2012;39:11231–11248. doi: 10.1007/s11033-012-2034-9. PubMed DOI
Wang T.Y., Hou L.T., Jian H.J., Di F.F., Li J.N., Liu L.Z. Combined QTL mapping, physiological and transcriptomic analyses to identify candidate genes involved in Brassica napus seed aging. Mol. Genet. Genom. 2018;293:1421–1435. doi: 10.1007/s00438-018-1468-8. PubMed DOI
Rajjou L., Lovigny Y., Groot S.P., Belghazi M., Job C., Job D. Proteome-wide characterization of seed aging in Arabidopsis: A comparison between artificial and natural aging protocols. Plant Physiol. 2008;148:620–641. doi: 10.1104/pp.108.123141. PubMed DOI PMC