Simple capacitor-switch model of excitatory and inhibitory neuron with all parts biologically explained allows input fire pattern dependent chaotic oscillations
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32355185
PubMed Central
PMC7192907
DOI
10.1038/s41598-020-63834-7
PII: 10.1038/s41598-020-63834-7
Knihovny.cz E-zdroje
- MeSH
- akční potenciály fyziologie MeSH
- modely neurologické MeSH
- mozek metabolismus MeSH
- neurony metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Due to known information processing capabilities of the brain, neurons are modeled at many different levels. Circuit theory is also often used to describe the function of neurons, especially in complex multi-compartment models, but when used for simple models, there is no subsequent biological justification of used parts. We propose a new single-compartment model of excitatory and inhibitory neuron, the capacitor-switch model of excitatory and inhibitory neuron, as an extension of the existing integrate-and-fire model, preserving the signal properties of more complex multi-compartment models. The correspondence to existing structures in the neuronal cell is then discussed for each part of the model. We demonstrate that a few such inter-connected model units are capable of acting as a chaotic oscillator dependent on fire patterns of the input signal providing a complex deterministic and specific response through the output signal. The well-known necessary conditions for constructing a chaotic oscillator are met for our presented model. The capacitor-switch model provides a biologically-plausible concept of chaotic oscillator based on neuronal cells.
Zobrazit více v PubMed
Herz AVM, Gollisch T, Machens CK, Jaeger D. Modeling single-neuron dynamics and computations: A balance of detail and abstraction. Science. 2006;314:80–85. doi: 10.1126/science.1127240. PubMed DOI
Segev I. Single neurone models: oversimple, complex and reduced. Trends Neurosci. 1992;15:414–421. doi: 10.1016/0166-2236(92)90003-q. PubMed DOI
McCulloch WS, Pitts WH. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bull Math Biophys. 1943;5:115–133. doi: 10.1007/BF02478259. PubMed DOI
Maass W. Networks of spiking neurons: The third generation of neural network models. Neural Networks. 1997;10:1659–1671. doi: 10.1016/S0893-6080(97)00011-7. DOI
Poirazi P, Brannon T, Mel BW. Pyramidal neuron as two-layer neural network. Neuron. 2003;37:989–999. doi: 10.1016/S0896-6273(03)00149-1. PubMed DOI
Ashwin, P., Coombes, S. & Nicks, R. Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience. J Math Neurosci6, UNSP 2, 10.1186/s13408-015-0033-6 (2016). PubMed PMC
Izhikevich EM. Which model to use for cortical spiking neurons? IEEE Trans Neural Netw. 2004;15:1063–1070. doi: 10.1109/TNN.2004.832719. PubMed DOI
Hindmarsh JL, Rose RM. A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B. 1984;221:87–102. doi: 10.1098/rspb.1984.0024. PubMed DOI
Koch, C. & Segev, I. Methods in neuronal modeling: from ions to networks. 2nd edn, (MIT Press, 1998).
Izhikevich EM, Edelman GM. Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci USA. 2008;105:3593–3598. doi: 10.1073/pnas.0712231105. PubMed DOI PMC
Abarbanel HDI, et al. Synchronization in neural networks. Physics-Uspekhi. 1996;39:337–362. doi: 10.1070/PU1996v039n04ABEH000141. DOI
Hodgkin AL, Huxley AF. A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve. J Physiol-London. 1952;117:500–544. doi: 10.1113/jphysiol.1952.sp004764. PubMed DOI PMC
Bower, J. M. & Beeman, D. The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System. 2 edn, 458 (Springer-Verlag, 1998).
Carnevale, N. T. & Hines, M. L. The NEURON book. (Cambridge University Press, 2006).
Ziv I, Baxter DA, Byrne JH. Simulator for Neural Networks and Action-Potentials - Description and Application. Journal of Neurophysiology. 1994;71:294–308. doi: 10.1152/jn.1994.71.1.294. PubMed DOI
Squire, L. R. Fundamental neuroscience. 4th edn, (Elsevier/Academic Press, 2013).
Cavanagh JB. The problems of neurons with long axons. Lancet. 1984;1:1284–1287. doi: 10.1016/s0140-6736(84)92457-7. PubMed DOI
Leterrier C. The Axon Initial Segment: An Updated Viewpoint. Journal of Neuroscience. 2018;38:2135–2145. doi: 10.1523/Jneurosci.1922-17.2018. PubMed DOI PMC
Clark BD, Goldberg EM, Rudy B. Electrogenic Tuning of the Axon Initial Segment. Neuroscientist. 2009;15:651–668. doi: 10.1177/1073858409341973. PubMed DOI PMC
Llinas RR. The Intrinsic Electrophysiological Properties of Mammalian Neurons - Insights into Central Nervous-System Function. Science. 1988;242:1654–1664. doi: 10.1126/science.3059497. PubMed DOI
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R. Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Bba-Biomembranes. 2004;1662:113–137. doi: 10.1016/j.bbamem.2003.10.023. PubMed DOI
Purves, D. Neuroscience. Sixth edition. (Oxford University Press, 2018).
Kandel, E. R. Principles of neural science. 5th edn, (McGraw-Hill, 2013).
Bennett MVL, Zukin RS. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron. 2004;41:495–511. doi: 10.1016/S0896-6273(04)00043-1. PubMed DOI
Gibson JR, Beierlein M, Connors BW. Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. Journal of Neurophysiology. 2005;93:467–480. doi: 10.1152/jn.00520.2004. PubMed DOI
Lytton, W. W. From computer to brain: foundations of computational neuroscience. (Springer, 2002).
Guillery RW. Early electron microscopic observations of synaptic structures in the cerebral cortex: a view of the contributions made by George Gray (1924-1999) Trends in Neurosciences. 2000;23:594–598. doi: 10.1016/S0166-2236(00)01635-0. PubMed DOI
Llinas R, Steinberg IZ, Walton K. Relationship between Presynaptic Calcium Current and Postsynaptic Potential in Squid Giant Synapse. Biophys J. 1981;33:323–351. doi: 10.1016/S0006-3495(81)84899-0. PubMed DOI PMC
Chapman ER. Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol. 2002;3:498–508. doi: 10.1038/nrm855. PubMed DOI
Sherwood, L. Human physiology: from cells to systems. 9th edition. edn, (Cengage Learning, 2016).
Haas JS, Zavala B, Landisman CE. Activity-Dependent Long-Term Depression of Electrical Synapses. Science. 2011;334:389–393. doi: 10.1126/science.1207502. PubMed DOI PMC
Gaiarsa JL, Caillard O, Ben-Ari Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. 2002;25:564–570. doi: 10.1016/s0166-2236(02)02269-5. PubMed DOI
Gerrow K, Triller A. Synaptic stability and plasticity in a floating world. Curr Opin Neurobiol. 2010;20:631–639. doi: 10.1016/j.conb.2010.06.010. PubMed DOI
Rall W. Branching Dendritic Trees and Motoneuron Membrane Resistivity. Exp Neurol. 1959;1:491–527. doi: 10.1016/0014-4886(59)90046-9. PubMed DOI
Rall, W. Theoretical significance of dendritic trees for neuronal input-output relations. (Stanford University Press, 1964).
Rall W. Distinguishing Theoretical Synaptic Potentials Computed for Different Soma-Dendritic Distributions of Synaptic Input. Journal of Neurophysiology. 1967;30:1138–&. doi: 10.1152/jn.1967.30.5.1138. PubMed DOI
Rall W, Shepherd GM. Theoretical Reconstruction of Field Potentials and Dendrodendritic Synaptic Interactions in Olfactory Bulb. Journal of Neurophysiology. 1968;31:884. doi: 10.1152/jn.1968.31.6.884. PubMed DOI
London M, Hausser M. Dendritic computation. Annu Rev Neurosci. 2005;28:503–532. doi: 10.1146/annurev.neuro.28.061604.135703. PubMed DOI
Polsky A, Mel BW, Schiller J. Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci. 2004;7:621–627. doi: 10.1038/nn1253. PubMed DOI
Läuger, P. Electrogenic ion pumps. (Sinauer Associates, 1991).
Liang M, et al. Identification of a pool of non-pumping Na/K-ATPase. J Biol Chem. 2007;282:10585–10593. doi: 10.1074/jbc.M609181200. PubMed DOI
el Mernissi G, et al. Characterization and localization of ouabain-insensitive Na-dependent ATPase activities along the rat nephron. Biochim Biophys Acta. 1991;1064:205–211. doi: 10.1016/0005-2736(91)90303-p. PubMed DOI
Kety, S. S. In Metabolism of the nervous system. (ed D. Richter), (Pergamon, 1957), 221–237.
Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cerebr Blood F Met. 2012;32:1222–1232. doi: 10.1038/jcbfm.2012.35. PubMed DOI PMC
Hodgkin AL, Huxley AF. Action potentials recorded from inside a nerve fiber. Nat Commun. 1939;144:710–711. doi: 10.1038/144710a0. DOI
Hodgkin AL, Huxley AF. Currents Carried by Sodium and Potassium Ions through the Membrane of the Giant Axon of Loligo. J Physiol-London. 1952;116:449–472. doi: 10.1113/jphysiol.1952.sp004717. PubMed DOI PMC
Hille, B. In Handbook of Physiology. (ed E.R. Kandel), (Am. Physiol. Soc., Bethesda, MD, U.S.A., 1977), 99–136.
Sengupta, B., Stemmler, M., Laughlin, S. B. & Niven, J. E. Action Potential Energy Efficiency Varies Among Neuron Types in Vertebrates and Invertebrates. PLOS Computational Biology6, ARTN e1000840, 10.1371/journal.pcbi.1000840 (2010). PubMed PMC
Coombs JS, Curtis DR, Eccles JC. The Interpretation of Spike Potentials of Motoneurones. J Physiol-London. 1957;139:198–231. doi: 10.1113/jphysiol.1957.sp005887. PubMed DOI PMC
Shu YS, Duque A, Yu YG, Haider B, McCormick DA. Properties of action-potential initiation in neocortical pyramidal cells: Evidence from whole cell axon recordings. Journal of Neurophysiology. 2007;97:746–760. doi: 10.1152/jn.00922.2006. PubMed DOI
Stuart G, Spruston N, Sakmann B, Hausser M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends in Neurosciences. 1997;20:125–131. doi: 10.1016/S0166-2236(96)10075-8. PubMed DOI
Coombs JS, Eccles JC, Fatt P. The Specific Ionic Conductances and the Ionic Movements across the Motoneuronal Membrane That Produce the Inhibitory Post-Synaptic Potential. J Physiol-London. 1955;130:326–373. doi: 10.1113/jphysiol.1955.sp005412. PubMed DOI PMC
Bunge RP. Glial Cells and Central Myelin Sheath. Physiol Rev. 1968;48:197–+. doi: 10.1152/physrev.1968.48.1.197. PubMed DOI
Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev. 2001;81:871–927. doi: 10.1152/physrev.2001.81.2.871. PubMed DOI
Ritchie, J. M. In Myelin. (ed Pierre Morell), (Plenum Press, 1984), 117–146.
Rushton WAH. A Theory of the Effects of Fibre Size in Medullated Nerve. J Physiol-London. 1951;115:101–122. doi: 10.1113/jphysiol.1951.sp004655. PubMed DOI PMC
Ritchie, J. M. In The Axon, Structure, Function and Pathophysiology. (eds S. G. Waxman, J. D. Kocsis, & P. K. Stys), (Oxford Univ. Press, 1995), 68–69.
Kellert, S. H. In the wake of chaos: unpredictable order in dynamical systems. (University of Chicago Press, 1993).
Kantz, H. & Schreiber, T. Nonlinear time series analysis. 2nd edn, (Cambridge University Press, 2004).
Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov Exponents from a Time-Series. Physica D. 1985;16:285–317. doi: 10.1016/0167-2789(85)90011-9. DOI
Dlask M, Kukal J. Application of rotational spectrum for correlation dimension estimation. Chaos Soliton Fract. 2017;99:256–262. doi: 10.1016/j.chaos.2017.04.026. DOI
Grassberger P, Procaccia I. Measuring the Strangeness of Strange Attractors. Physica D. 1983;9:189–208. doi: 10.1016/0167-2789(83)90298-1. DOI
Duane GS. Synchronicity from Synchronized Chaos. Entropy-Switz. 2015;17:1701–1733. doi: 10.3390/e17041701. DOI
Shilnikov AL, Rulkov NF. Origin of chaos in a two-dimensional map modeling spiking-bursting neural activity. Int J Bifurcat Chaos. 2003;13:3325–3340. doi: 10.1142/S0218127403008521. DOI
Rall W. Theory of Physiological Properties of Dendrites. Ann N Y Acad Sci. 1962;96:1071–+. doi: 10.1111/j.1749-6632.1962.tb54120.x. PubMed DOI
Rall, W., Segev, I., Rinzel, J. & Shepherd, G. M. The theoretical foundation of dendritic function: selected papers of Wilfrid Rall with commentaries. (MIT Press, 1995).
Destexhe A, Neubig M, Ulrich D, Huguenard J. Dendritic low-threshold calcium currents in thalamic relay cells. Journal of Neuroscience. 1998;18:3574–3588. doi: 10.1523/JNEUROSCI.18-10-03574.1998. PubMed DOI PMC
Jaeger D, DeSchutter E, Bower JM. The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: A modeling study. Journal of Neuroscience. 1997;17:91–106. doi: 10.1523/JNEUROSCI.17-01-00091.1997. PubMed DOI PMC
Rhodes PA, Llinas R. A model of thalamocortical relay cells. J Physiol-London. 2005;565:765–781. doi: 10.1113/jphysiol.2004.070888. PubMed DOI PMC
Morris C, Lecar H. Voltage Oscillations in the Barnacle Giant Muscle-Fiber. Biophys J. 1981;35:193–213. doi: 10.1016/S0006-3495(81)84782-0. PubMed DOI PMC
Wilson HR, Cowan JD. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik. 1973;13:55–80. doi: 10.1007/bf00288786. PubMed DOI
Abbott LF. Lapicque’s introduction of the integrate-and-fire model neuron (1907) Brain Res Bull. 1999;50:303–304. doi: 10.1016/S0361-9230(99)00161-6. PubMed DOI
Brunel, N. & van Rossum, M. C. W. Quantitative investigations of electrical nerve excitation treated as polarization (Reprinted from Journal de Physiologie et de Pathologie Generale, vol. 9, pg 620–635, 1907). Biological Cybernetics97, 341–349, 10.1007/s00422-007-0189-6 (2007). PubMed
Dayan, P. & Abbott, L. F. Theoretical neuroscience: computational and mathematical modeling of neural systems. (Massachusetts Institute of Technology Press, 2001).
Fitzhugh, R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J1, 445–&, 10.1016/S0006-3495(61)86902-6 (1961). PubMed PMC
Hoppensteadt F. Heuristics for the Hodgkin-Huxley system. Math Biosci. 2013;245:56–60. doi: 10.1016/j.mbs.2012.11.006. PubMed DOI
Giannoukos G, Min M. Mathematical and Physical Modelling of the Dynamic Electrical Impedance of a Neuron. International Journal of Circuits, Systems and Signal Processing. 2012;6:359–366.
Velichko, A., Belyaev, M. & Boriskov, P. A Model of an Oscillatory Neural Network with Multilevel Neurons for Pattern Recognition and Computing. Electronics-Switz8, ARTN 75, 10.3390/electronics8010075 (2019).
Ghaffari BV, Kouhnavard M, Aihara T, Kitajima T. Mathematical Modeling of Subthreshold Resonant Properties in Pyloric Dilator Neurons. Biomed Res Int. 2015 doi: 10.1155/2015/135787. PubMed DOI PMC
Aissi, C. & Kazakos, D. In Proceedings of the 10th WSEAS International Conference on CIRCUITS. (Athens, Greece, 2006), 125–131.
Elwakil AS, Kennedy MP. Chaotic oscillators derived from sinusoidal oscillators based on the current feedback op amp. Analog Integr Circ S. 2000;24:239–251. doi: 10.1023/A:1008369810214. DOI
Hasler MJ. Electrical Circuits with Chaotic Behavior. P Ieee. 1987;75:1009–1021. doi: 10.1109/Proc.1987.13846. DOI
Minati, L., Frasca, M., Oswiecimka, P., Faes, L. & Drozdz, S. Atypical transistor-based chaotic oscillators: Design, realization, and diversity. Chaos27, Artn 073113, 10.1063/1.4994815 (2017). PubMed
Tamasevicius A, Mykolaitis G, Pyragas V, Pyragas K. A simple chaotic oscillator for educational purposes. Eur J Phys. 2005;26:61–63. doi: 10.1088/0143-0807/26/1/007. DOI
Matsumoto T. A chaotic attractor from Chua’s circuit. IEEE Transactions on Circuits and Systems. 1984;31:1055–1058. doi: 10.1109/TCS.1984.1085459. DOI
Minati, L. Experimental dynamical characterization of five autonomous chaotic oscillators with tunable series resistance. Chaos24, Artn 033110, 10.1063/1.4890530 (2014). PubMed
Pinsky PF, Rinzel J. Intrinsic and Network Rhythmogenesis in a Reduced Traub Model for Ca3 Neurons (Vol. 1, Pg. 59, 1994) J Comput Neurosci. 1995;2:275–275. doi: 10.1007/Bf00961439. PubMed DOI
Mainen ZF, Sejnowski TJ. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature. 1996;382:363–366. doi: 10.1038/382363a0. PubMed DOI
Schmitt, O. H. & Schmitt, F. O. The nature of the nerve impulse. Am. J. Physiol. 97 (1931).
Cejnar P, Vysata O, Valis M, Prochazka A. The Complex Behaviour of a Simple Neural Oscillator Model in the Human Cortex. Ieee T Neur Sys Reh. 2019;27:337–347. doi: 10.1109/Tnsre.2018.2883618. PubMed DOI
Manneville, P. Dissipative structures and weak turbulence. (Academic Press, 1990).
Whitney H. Differentiable Manifolds. Annals of Mathematics. 1936;37:645–680. doi: 10.2307/1968482. DOI
Grassberger P, Procaccia I. Characterization of Strange Attractors. Physical Review Letters. 1983;50:346–349. doi: 10.1103/PhysRevLett.50.346. DOI
Moffett, S. X., O’Malley, S. M., Man, S. S., Hong, D. W. & Martin, J. V. Dynamics of high frequency brain activity. Sci Rep7, ARTN 15758, 10.1038/s41598-017-15966-6 (2017). PubMed PMC
Hamada MS, Kole MHP. Myelin Loss and Axonal Ion Channel Adaptations Associated with Gray Matter Neuronal Hyperexcitability. Journal of Neuroscience. 2015;35:7272–7286. doi: 10.1523/Jneurosci.4747-14.2015. PubMed DOI PMC
R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (2018).