Recognition of Patient Groups with Sleep Related Disorders using Bio-signal Processing and Deep Learning
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32370185
PubMed Central
PMC7248846
DOI
10.3390/s20092594
PII: s20092594
Knihovny.cz E-zdroje
- Klíčová slova
- electrocardiography, electromyography, polysomnography, respiratory modulation, synchrosqueezed wavelet transform,
- MeSH
- algoritmy MeSH
- biosenzitivní techniky * MeSH
- deep learning * MeSH
- dýchání MeSH
- elektrokardiografie MeSH
- entropie MeSH
- lidé MeSH
- obstrukční spánková apnoe MeSH
- počítačové zpracování signálu * MeSH
- polysomnografie MeSH
- poruchy spánku a bdění * MeSH
- srdeční frekvence MeSH
- vlnková analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Accurately diagnosing sleep disorders is essential for clinical assessments and treatments. Polysomnography (PSG) has long been used for detection of various sleep disorders. In this research, electrocardiography (ECG) and electromayography (EMG) have been used for recognition of breathing and movement-related sleep disorders. Bio-signal processing has been performed by extracting EMG features exploiting entropy and statistical moments, in addition to developing an iterative pulse peak detection algorithm using synchrosqueezed wavelet transform (SSWT) for reliable extraction of heart rate and breathing-related features from ECG. A deep learning framework has been designed to incorporate EMG and ECG features. The framework has been used to classify four groups: healthy subjects, patients with obstructive sleep apnea (OSA), patients with restless leg syndrome (RLS) and patients with both OSA and RLS. The proposed deep learning framework produced a mean accuracy of 72% and weighted F1 score of 0.57 across subjects for our formulated four-class problem.
Zobrazit více v PubMed
Fang Y., Jiang Z., Wang H. A novel sleep respiratory rate detection method for obstructive sleep apnea based on characteristic moment waveform. J. Healthc. Eng. 2018;2018:1902176. doi: 10.1155/2018/1902176. PubMed DOI PMC
Khandoker A.H., Palaniswami M., Karmakar C.K. Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings. IEEE Trans. Inf. Technol. Biomed. 2009;13:37–48. doi: 10.1109/TITB.2008.2004495. PubMed DOI
de Weerd A.W., Rijsman R.M. Activity patterns of leg muscles in periodic limb movement disorder. J. Neurol. Neurosurg. Psychiatry. 2004;75:317–319. PubMed PMC
Roux F.J. Restless legs syndrome: Impact on sleep-related breathing disorders. Respirology. 2013;18:238–245. doi: 10.1111/j.1440-1843.2012.02249.x. PubMed DOI
Ferreri F., Rossini P.M. Neurophysiological investigations in restless legs syndrome and other disorders of movement during sleep. Sleep Med. 2004;5:397–399. doi: 10.1016/j.sleep.2004.01.010. PubMed DOI
Hamilton G., Meredith I., Walker A., Solin P. Obstructive sleep apnea leads to transient uncoupling of coronary blood flow and myocardial work in humans. Sleep. 2009;32:263–270. doi: 10.1093/sleep/32.2.263. PubMed DOI PMC
Takama N., Kurabayashi M. Influence of untreated sleep disordered breathing on the long-term prognosis of patients with cardiovascular disease. Am. J. Cardiol. 2009;103:730–734. doi: 10.1016/j.amjcard.2008.10.035. PubMed DOI
Abdulla S., Diykh M., Luaibi Laft L., Saleh K., Deo R.C. Sleep EEG signal analysis based on correlation graph similarity coupled with an ensemble extreme machine learning algorithm. Expert Syst. Appl. 2019;138:112790. doi: 10.1016/j.eswa.2019.07.007. DOI
Diykh M., Li Y., Abdulla S. EEG sleep stages identification based on weighted undirected complex networks. Comput. Methods Programs Biomed. 2020;184:105116. doi: 10.1016/j.cmpb.2019.105116. PubMed DOI
Saha S., Bhattacharjee A., Fattah S.A. Automatic detection of sleep apnea events based on inter-band energy ratio obtained from multi-band EEG signal. Healthc. Technol. Lett. 2019;6:82–86. doi: 10.1049/htl.2018.5101. PubMed DOI PMC
Sugi T., Kawana F., Nakamura M. Automatic EEG arousal detection for sleep apnea syndrome. Biomed. Signal Process. Control. 2009;4:329–337. doi: 10.1016/j.bspc.2009.06.004. DOI
Moridani M.K., Heydar M., Jabbari Behnam S.S. A Reliable Algorithm Based on Combination of EMG, ECG and EEG Signals for Sleep Apnea Detection: (A Reliable Algorithm for Sleep Apnea Detection); Proceedings of the 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI); Tehran, Iran. 28 February–1 March 2019; pp. 256–262.
Mosquera-Lopez C., Leitschuh J., Condon J., Hagen C.C., Rajhbeharrysingh U., Hanks C., Jacobs P.G. Design and Evaluation of a Non-Contact Bed-Mounted Sensing Device for Automated In-Home Detection of Obstructive Sleep Apnea: A Pilot Study. Biosensors. 2019;9:90. doi: 10.3390/bios9030090. PubMed DOI PMC
Andreu-Perez J., Cao F., Hagras H., Yang G.Z. A self-adaptive online brain-machine interface of a humanoid robot through a general type-2 fuzzy inference system. IEEE Trans. Fuzzy Syst. 2016;26:101–116. doi: 10.1109/TFUZZ.2016.2637403. DOI
Bsoul M., Minn H., Tamil L. Apnea MedAs-sist: Real-time sleep apnea monitor using single-lead ECG. IEEE Trans. Inf. Technol. Biomed. 2011;15:416–427. doi: 10.1109/TITB.2010.2087386. PubMed DOI
Jarchi D., Sanei S., Prochazka A. Detection of sleep apnea/hypopnea events using synchrosqueezed wavelet transform; Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Brighton, UK. 12–17 May 2019; pp. 1199–1203.
Jarchi D., Sanei S. Derivation of respiratory effort from photoplethysmography; Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO); A Coruna, Spain. 2–6 September 2019; pp. 1–5.
Shokrollahi M., Krishnan S. A Review of Sleep Disorder Diagnosis by Electromyogram Signal Analysis. Crit. Rev. Biomed. Eng. 2015;43:1–20. doi: 10.1615/CritRevBiomedEng.2015012037. PubMed DOI
Podlipnik M., Sarc I., Ziherl K. Restless leg syndrome is common in patients with obstructive sleep apnoea. ERJ Open Res. 2017;3:20.
Prochazka A., Kuchynka J., Vysata O., Cejnar P., Valis M., Marik V. Multi-class sleep stage analysis and adaptive pattern recognition. Appl. Sci. 2018;8:697. doi: 10.3390/app8050697. DOI
Prochazka A., Kuchynka J., Vysata O., Yadollahi M., Sanei S., Marik V., Valis M. Sleep scoring using polysomnography data features. Signal Image Video Process. 2018;12:1043–1051. doi: 10.1007/s11760-018-1252-6. DOI
Rostaghi M., Azami H. Dispersion Entropy: A measure for time-series analysis. IEEE Signal Process. Lett. 2016;23:610–614. doi: 10.1109/LSP.2016.2542881. DOI
Sanei S., Lee T.K.M., Abolghasemi V. A new adaptive line enhancer based on singular spectrum analysis. IEEE Trans. Biomed. Eng. 2012;59:428–434. doi: 10.1109/TBME.2011.2173936. PubMed DOI
Richman J.S., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000;278:H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039. PubMed DOI
Bandt C., Pompe B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002;88:1–4. doi: 10.1103/PhysRevLett.88.174102. PubMed DOI
Shannon C.E. A mathematical theory of communication. Bell Syst Tech. J. 1948;27:623–656. doi: 10.1002/j.1538-7305.1948.tb00917.x. DOI
Daubechies I., Lu J., Wu H. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 2011;30:243–261. doi: 10.1016/j.acha.2010.08.002. DOI
Thakur G., Brevdo E., Fuckar N.S., Wu H.T. The Synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications. IEEE Trans. Signal Process. 2011;93:1094–1097. doi: 10.1016/j.sigpro.2012.11.029. DOI
Carmona R.A., Wang W.L., Torresani B. Characterization of signals by the ridges of their wavelet transforms. IEEE Trans. Signal Process. 1997;45:2586–2590. doi: 10.1109/78.640725. DOI
Charlton P.H., Bonnici T., Tarassenko L., Clifton D.A., Beale R., Watkinson P.J. An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram. Physiol. Meas. 2016;37:610–626. doi: 10.1088/0967-3334/37/4/610. PubMed DOI PMC
Charlton P.H., Birrenkott D.A., Bonnici T., Pimentel M.A., Johnson A.E., Alastruey J., Tarassenko L., Watkinson P.J., Beale R., Clifton D.A. Breathing rate estimation from the electrocardiogram and photoplethysmogram: A Review. IEEE Rev. Biomed. Eng. 2018;11:2–20. doi: 10.1109/RBME.2017.2763681. PubMed DOI PMC
Varoquaux G., Buitinck L., Louppe G., Grisel O., Pedregosa F., Mueller A. Scikit-learn: Machine learning without learning the machinery. GetMob. Mob. Comput. Commun. 2015;19:29–33. doi: 10.1145/2786984.2786995. DOI
Chang C.C., Lin C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011;6:1–27. doi: 10.1145/1961189.1961199. DOI
Fan R.E., Chang K.W., Hsieh C.J., Wang X.R., Lin C.J. Liblinear: A library for large linear classification. J. Mach. Learn. Res. 2008;9:1871–1874.
Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI
Short R., Fukunaga K. The optimal distance measure for nearest neighbor classification. IEEE Trans. Inf. Theory. 1981;27:622–627. doi: 10.1109/TIT.1981.1056403. DOI
Chen T., Guestrin C. Xgboost: A scalable tree boosting system; Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; San Francisco, CA, USA. 13–17 August 2016; pp. 785–794.
Jin H., Song Q., Hu X. Auto-keras: An efficient neural architecture search system; Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; Anchorage, AK, USA. 4–8 August 2019; pp. 1946–1956.
Nielsen D. Master’s Thesis. NTNU; Trondheim, Norway: 2016. Tree Boosting with XGBoost-Why does Xgboost Win “Every” Machine Learning Competition?
Andreu-Perez J., Garcia-Gancedo L., McKinnell J., Van der Drift A., Powell A., Hamy V., Keller T., Yang G.Z. Developing fine-grained Actigraphies for rheumatoid arthritis patients from a single accelerometer using machine learning. Sensors. 2017;17:2113. doi: 10.3390/s17092113. PubMed DOI PMC