Polymer Labelling with a Conjugated Polymer-Based Luminescence Probe for Recycling in the Circular Economy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-05318S
Grantová Agentura České Republiky
PubMed
32481616
PubMed Central
PMC7362226
DOI
10.3390/polym12061226
PII: polym12061226
Knihovny.cz E-zdroje
- Klíčová slova
- fluorescence, label, labelling, polyacetylene, recycling, thermoplastics,
- Publikační typ
- časopisecké články MeSH
In this paper, we present the use of a disubstituted polyacetylene with high thermal stability and quantum yield as a fluorescence label for the identification, tracing, recycling, and eventually anti-counterfeiting applications of thermoplastics. A new method was developed for the dispersion of poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA) into polymer blends. For such purposes, four representative commodity plastics were selected, i.e., polypropylene, low-density polyethylene, poly(methyl methacrylate), and polylactide. Polymer recycling was mimicked by two reprocessing cycles of the material, which imparted intensive luminescence to the labelled polymer blends when excited by proper illumination. The concentration of the labelling polymer in the matrices was approximately a few tens ppm by weight. Luminescence was visible to the naked eye and survived the simulated recycling successfully. In addition, luminescence emission maxima were correlated with polymer polarity and glass transition temperature, showing a marked blueshift in luminescence emission maxima with the increase in processing temperature and time. This blueshift results from the dispersion of the labelling polymer into the labelled polymer matrix. During processing, the polyacetylene chains disentangled, thereby suppressing their intermolecular interactions. Moreover, shear forces imposed during viscous polymer melt mixing enforced conformational changes, which shortened the average conjugation length of PTMSDPA chain segments. Combined, these two mechanisms shift the luminescence of the probe from a solid- to a more solution-like state. Thus, PTMSDPA can be used as a luminescent probe for dispersion quality, polymer blend homogeneity, and processing history, in addition to the identification, tracing, and recycling of thermoplastics.
Zobrazit více v PubMed
Plastics Europe . Plastics—The Facts 2019. An Analysis of European Plastics Production, Demand and Waste Data. PlasticsEurope Deutschland e.V.; Düsseldorf, Germany: 2019.
Okoffo E.D., O’Brien S., O’Brien J.W., Tscharke B.J., Thomas K.V. Wastewater Treatment Plants as a Source of Plastics in the Environment: A Review of Occurrence, Methods for Identification, Quantification and Fate. Environ. Sci. Water Res. Technol. 2019;5:1908–1931. doi: 10.1039/C9EW00428A. DOI
Turner A., Wallerstein C., Arnold R. Identification, Origin and Characteristics of Bio-Bead Microplastics from Beaches in Western Europe. Sci. Total Environ. 2019;664:938–947. doi: 10.1016/j.scitotenv.2019.01.281. PubMed DOI
Signoret C., Caro-Bretelle A., Lopez-Cuesta J., Ienny P., Perrin D. MIR Spectral Characterization of Plastic to Enable Discrimination in an Industrial Recycling Context: II. Specific Case of Polyolefins. Waste Manag. 2019;98:160–172. doi: 10.1016/j.wasman.2019.08.010. PubMed DOI
Lei Y., Guo X.M., Zhu S.C., Wang M.M., Jin G. Application Progress of Near-Infrared Spectroscopy in the Polymer Field. Spectrosc. Spectr. Anal. 2019;39:2114–2118.
Junjuri R., Gundawar M.K. Femtosecond Laser-Induced Breakdown Spectroscopy Studies for the Identification of Plastics. J. Anal. At. Spectrom. 2019;34:1683–1692. doi: 10.1039/C9JA00102F. DOI
Stefas D., Gyftokostas N., Bellou E., Couris S. Laser-Induced Breakdown Spectroscopy Assisted by Machine Learning for Plastics/Polymers Identification. Atoms. 2019;7:79. doi: 10.3390/atoms7030079. DOI
Boeykens S., Vazquez C., Temprano N. Macromolecules by Total Reflection X-Ray Fluorescence: Marking Techniques. Spectroc. Acta Part B At. Spectr. 2003;58:2169–2175. doi: 10.1016/j.sab.2003.07.005. DOI
Grof Y., Kislev T., Yoran N., Alon H. A Method and a System for XRF Marking and Reading XRF Marks of Electronic Systems. 10,607,049. U.S. Patent. 2020 Mar 31;
Gao G., Busko D., Joseph R., Turshatov A., Howard I.A., Richards B.S. High Quantum Yield Single-Band Green Upconversion in La2O3:Yb3+, Ho3+ Microcrystals for Anticounterfeiting and Plastic Recycling. Part. Part. Syst. Charact. 2019;36:1800462. doi: 10.1002/ppsc.201800462. DOI
Gao G., Turshatov A., Howard I.A., Busko D., Joseph R., Hudry D., Richards B.S. Up-Conversion Fluorescent Labels for Plastic Recycling: A Review. Adv. Sustain. Syst. 2017;1:1600033. doi: 10.1002/adsu.201600033. DOI
Gai S., Li C., Yang P., Lin J. Recent Progress in Rare Earth Micro/Nanocrystals: Soft Chemical Synthesis, Luminescent Properties, and Biomedical Applications. Chem. Rev. 2014;114:2343–2389. doi: 10.1021/cr4001594. PubMed DOI
Yang J., Ho Y., Chan Y. Ultrabright Fluorescent Polymer Dots with Thermochromic Characteristics for Full-Color Security Marking. ACS Appl. Mater. Interfaces. 2019;11:29341–29349. doi: 10.1021/acsami.9b10393. PubMed DOI
Massardier V., Louizi M., Maris E., Froelich D. High Shear Dispersion of Tracers in Polyolefins for Improving their Detection. Polim. Cienc. E Tecnol. 2015;25:466–476. doi: 10.1590/0104-1428.1974. DOI
Maris E., Aoussat A., Naffrechoux E., Froelich D. Polymer Tracer Detection Systems with UV Fluorescence Spectrometry to Improve Product Recyclability. Miner. Eng. 2012;29:77–88. doi: 10.1016/j.mineng.2011.09.016. DOI
Lambert C., Hachin J. Method for Authentication by Chemical Marking orTracing of an Object Or a Substance. 7,605,372. U.S. Patent. 2009 Oct 20;
Ahmad S. A New Technology for Automatic Identification and Sorting of Plastics for Recycling. Environ. Technol. 2004;25:1143–1149. doi: 10.1080/09593332508618380. PubMed DOI
Ahmad S. Marking of Products with Fluorescent Tracers in Binary Combinations for Automatic Identification and Sorting. Assem. Autom. 2000;20:58–64. doi: 10.1108/01445150010311617. DOI
Corbett E.C., Frey J.G., Grose R.I., Hendra P.J., Taylorbrown T. An Investigation into the Applicability of Luminescent Tagging to Polymer Recovery. Plast. Rubber Compos. Process. Appl. 1994;21:5–11.
Luttermann K., Claussen U., El Sayed A., Riess R. Process for Identifying Plastics by Addition of Fluorescent Dye. 5,201,921. U.S. Patent. 1993 Apr 13;
Tsuchihara K., Masuda T., Higashimura T. Polymerization of Silicon-Containing Diphenylacetylenes and High Gas-Permeability of the Product Polymers. Macromolecules. 1992;25:5816–5820. doi: 10.1021/ma00047a038. DOI
Duchoslavova Z., Sivkova R., Hankova V., Sedlacek J., Svoboda J., Vohlidal J., Zednik J. Synthesis and Spectral Properties of Novel Poly(Disubstituted Acetylene)S. Macromol. Chem. Phys. 2011;212:1802–1814. doi: 10.1002/macp.201100160. DOI
Kwak G., Aoki T., Toy L., Freeman B., Masuda T. Synthesis, Characterization, and Oxygen Permeability of Homo- and Copolymers from P-[Tris(Trimethylsilyl)Silyl]-Phenylacetylene. Polym. Bull. 2000;45:215–221. doi: 10.1007/PL00006835. DOI
Toy L., Nagai K., Freeman B., Pinnau I., He Z., Masuda T., Teraguchi M., Yampolskii Y. Pure-Gas and Vapor Permeation and Sorption Properties of Poly[1-Phenyl-2-[P-(Trimethylsilyl)Phenyl]Acetylene] (PTMSDPA) Macromolecules. 2000;33:2516–2524. doi: 10.1021/ma991566e. DOI
Tsuchihara K., Masuda T., Higashimura T. Tractable Silicon-Containing Poly(Diphenylacetylenes)—Their Synthesis and High Gas-Permeability. J. Am. Chem. Soc. 1991;113:8548–8549. doi: 10.1021/ja00022a066. DOI
Kwak G., Lee W., Jeong H., Sakaguchi T., Fujiki M. Swelling-Induced Emission Enhancement in Substituted Acetylene Polymer Film with Large Fractional Free Volume: Fluorescence Response to Organic Solvent Stimuli. Macromolecules. 2009;42:20–24. doi: 10.1021/ma802506x. DOI
Kwak G., Fujiki M., Sakaguchi T., Masuda T. Mono- and Multicolor FL Image Patterning Based on Highly Luminous Diphenylacetylene Polymer Derivative by Facile Photobleaching. Macromolecules. 2006;39:319–323. doi: 10.1021/ma051630u. DOI
Taddei P., Tinti A., Fini G. Vibrational Spectroscopy of Polymeric Biomaterials. J. Raman Spectrosc. 2001;32:619–629. doi: 10.1002/jrs.723. DOI
Jia W., Luo Y., Yu J., Liu B., Hu M., Chai L., Wang C. Effects of High-Repetition-Rate Femtosecond Laser Micromachining on the Physical and Chemical Properties of Polylactide (PLA) Opt. Express. 2015;23:26932–26939. doi: 10.1364/OE.23.026932. PubMed DOI
Dybal J., Krimm S. Normal-Mode Analysis of Infrared and Raman-Spectra of Crystalline Isotactic Poly(Methyl Methacrylate) Macromolecules. 1990;23:1301–1308. doi: 10.1021/ma00207a013. DOI
Neppel A., Butler I.S. Raman-Spectra of Fully Deuteriated Syndiotactic and Isotactic Poly(Methyl Methacrylate) J. Raman Spectrosc. 1984;15:257–263. doi: 10.1002/jrs.1250150410. DOI
Kwak G., Fukao S., Fujiki M., Sakaguchi T., Masuda T. Nanoporous, Honeycomb-Structured Network Fibers Spun from Semiflexible, Ultrahigh Molecular Weight, Disubstituted Aromatic Polyacetylenes: Superhierarchical Structure and Unique Optical Anisotropy. Chem. Mater. 2006;18:5537–5542. doi: 10.1021/cm061719u. DOI
Ashby M.F., Shercliff H., Cebon D. Materials: Engineering, Science, Processing and Design. 4th ed. Elsevier; Waltham, MA, USA: 2019.
Osswald T.A., Baur E., Brinkmann S., Oberbach K., Schmachtenberg E. International Plastics Handbook. Carl Hanser Verlag GmbH & Co. KG; Munich, Germany: 2006. MATERIAL PROPERTY TABLES; pp. 717–902. Anonymous.
Badia J.D., Monreal L., Saenz de Juano-Arbona V., Ribes-Greus A. Dielectric Spectroscopy of Recycled Polylactide. Polym. Degrad. Stab. 2014;107:21–27. doi: 10.1016/j.polymdegradstab.2014.04.023. DOI
Zenkiewicz M., Zuk T., Markiewicz E. Triboelectric Series and Electrostatic Separation of some Biopolymers. Polym. Test. 2015;42:192–198. doi: 10.1016/j.polymertesting.2015.01.009. DOI
Ohki Y., Hirai N. Dielectric Properties of Biodegradable Polymers; Proceedings of the 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena; Kansas City, MO, USA. 15–18 October 2006; pp. 668–671.
Fakirov S., Krasteva B. On the Glass Transition Temperature of Polyethylene as Revealed by Microhardness Measurements. J. Macromol. Sci. Phys. 2000;39:297–301. doi: 10.1081/MB-100100386. DOI
Reichardt C., Welton T. Solvents and Solvent Effects in Organic Chemistry: Fourth Edition. Wiley-VCH; Weinheim, Germany: 2010.
Spano F.C., Silva C. H- and J-Aggregate Behavior in Polymeric Semiconductors. Annu. Rev. Phys. Chem. 2014;65:477–500. doi: 10.1146/annurev-physchem-040513-103639. PubMed DOI
Urbanek P., Kuritka I., Danis S., Touskova J., Tousek J. Thickness threshold of structural ordering in thin MEH-PPV films. Polymer. 2014;16:4050–4056. doi: 10.1016/j.polymer.2014.05.054. DOI