Salt tolerance of nitrate reductase in Halomonas sp. B01

. 2020 Oct ; 65 (5) : 909-916. [epub] 20200601

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32483684

Grantová podpora
20110216001 Fundamental Research Funds for the Central Universities and Collaborative Innovation Center for Vessel Pollution Monitoring and Control Seed Fund Project, Dalian Maritime University

Odkazy

PubMed 32483684
DOI 10.1007/s12223-020-00801-9
PII: 10.1007/s12223-020-00801-9
Knihovny.cz E-zdroje

A systematic study on the lack of dissimilatory nitrate reductase (NAR) properties in Halomonas strains had been reported so far. The effects of different factors on Halomonas sp. B01 NAR activity were investigated. The salt tolerance of NAR was characterized. The denitrification process under high salt conditions was reported. Halomonas sp. B01 expressed membrane-bound NAR under induced culture by nitrate. The optimum pH of the enzyme reaction system was 8, and the optimum temperature was 30 °C. The mRNA expression abundance of narH in NAR encoding gene was highest in the 60 g/L NaCl inducing matrix. The NaCl concentration of optimum growth and induction of NAR were both 60 g/L. The ectoine added to the NAR vitro enzyme reaction system could maintain NAR activity under high NaCl concentration. In the range of 0-60 g/L NaCl, the NAR activity was stable at 17.7 (± 0.3) U/mg. The denitrification was performed by Halomonas sp. B01 at 60 g/L NaCl, and the denitrification rate reached 97.1% at 24 h. This study reveals for the first time the NAR properties of Halomonas strains, which provides a theoretical and technical basis for the nitrogen removal of high-salt nitrogenous wastewater using this strain.

Zobrazit více v PubMed

APHA (1999) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington

Argandoña M, Martınez-Checa F, Llamas I, Arco Y, Quesada E, Moral AD (2006) A membrane-bound nitrate reductase encoded by the narGHJI operon is responsible for anaerobic respiration in Halomonas maura. Extremophiles 10:411–419. https://doi.org/10.1007/s00792-006-0515-2 PubMed DOI

Arnoux P, Sabaty M, Alric J, Frangioni B, Guigliarelli B, Adriano JM, Pignol D (2003) Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Nat Struct Biol 10:928–934. https://doi.org/10.1038/nsb994 PubMed DOI

Barber MJ, Desai SK, Marohnic CC, Hernandez HH, Pollock VV (2002) Synthesis and bacterial expression of a gene encoding the heme domain of assimilatory nitrate reductase. Arch Biochem Biophys 402:38–50. https://doi.org/10.1016/S0003-9861(02)00035-8 PubMed DOI

Bell LC, Richardson DJ, Ferguson SJ (1990) Periplasmic and membrane-bound respiratory nitrate reductases in Thiosphaera pantotropha. FEBS 265:85–87. https://doi.org/10.1016/0014-5793(90)80889-Q DOI

Berendes F, Gottschalk G, Heine-Dobbernack E, Moore ERB, Tindall BJ (1996) Halomonas desiderata sp. nov., a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works. Syst Appl Microbiol 19:158–167. https://doi.org/10.1016/S0723-2020(96)80041-5 DOI

Carter JP, Hsiao YH, Spiro S, Richardson DJ (1995) Soil and sediment bacteria capable of aerobic nitrate respiration. Appl Environ Microbiol 61:2852–2858. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC167561/ . Accessed March 2018 DOI

de la Haba RR, Arahal DR, Sanchez-Porro C, Ventosa A (2014) The prokaryotes: Gammaproteobacteria: 17 the family Halomonadaceae. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-38922-1_235 DOI

Guo Y, Zhou XM, Li YG, Li K, Wang CX, Liu JF, Yan DJ, Liu YL, Yang DH, Xing JM (2013) Heterotrophic nitrification and aerobic denitrification by a novel Halomonas campisalis. Biotechnol Lett 35:2045–2049. https://doi.org/10.1007/s10529-013-1294-3 PubMed DOI

Jetten MSM, Logemann S, Muyzer G, Robertson LA, Vries SD, Loosdrecht MCMV, Kuenen JG (1997) Novel principles in the microbial conversion of nitrogen compounds. Antonie Van Leeuwenhoek 71:75–93. https://doi.org/10.1023/A:1000150219937 PubMed DOI

Llamas I, Moral AD, Martı’nez-Checa F, Arco Y, Arias S, Quesada E (2006) Halomonas maura is a physiologically versatile bacterium of both ecological and biotechnological interest. Antonie Van Leeuwenhoek 89:395–403. https://doi.org/10.1007/s10482-005-9043-9 PubMed DOI

Marino JH, Cook P, Miller KS (2003) Accurate and statistically verified quantification of relative mRNA abundances using SYBR green I and real-time RT-PCR. J Immunol Methods 283:291–306. https://doi.org/10.1016/S0022-1759(03)00103-0 PubMed DOI

Mormile MR, Romine MF, Garcia MT, Ventosa A, Bailey TJ, Peyton BM (1999) Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 22:551–558. https://doi.org/10.1016/S0723-2020(99)80008-3 PubMed DOI

Morozkina EV, Zvyagilskaya RA (2007) Nitrate reductases: structure, functions, and effect of stress factors. Biochem Mosc 72:1151–1160. https://doi.org/10.1134/S0006297907100124 DOI

Pastor JM, Salvador M, Argandoña M, Bernal V, Reina-Bueno M, Csonka LN, Iborra JL, Vargas C, Nieto JJ, Cánovas M (2010) Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv 28:782–801. https://doi.org/10.1016/j.biotechadv.2010.06.005 PubMed DOI

Stolz JF, Basu P (2002) Evolution of nitrate reductase: molecular and structural variations on a common function. Chembiochem 3:198–206. https://doi.org/10.1002/1439-7633(20020301)3:2/3<198::AID-CBIC198>3.0.CO;2-C PubMed DOI

Sun HF, Wang HW, Yuan CY (2013) Optimization of zinc-cadmium reduction method for determination of nitrate in seawater. Adv Mater Res 864–867:1004–1007. https://doi.org/10.4028/www.scientific.net/AMR.864-867.1004 DOI

Wang T, Li J, Zhang LH, Yu Y, Zhu YM (2017) Simultaneous heterotrophic nitrification and aerobic denitrification at high concentrations of NaCl and ammonia nitrogen by Halomonas bacteria. Water Sci Technol 76:386–395. https://doi.org/10.2166/wst.2017.214 PubMed DOI

Zhang LH, Lang YJ, Nagata S (2009) Efficient production of ectoine using ectoine-excreting strain. Extremophiles 13:717–724. https://doi.org/10.1007/s00792-009-0262-2 PubMed DOI

Zhang SM, Li WG, Zhang DY, Huang XF, Qin W, Gu J (2015) Purification and characterization of a low-temperature ammonia monooxygenase from heterotrophic nitrifier Acinetobacter sp. Y16. Desalin Water Treat 53:257–262. https://doi.org/10.1080/19443994.2013.837002 DOI

Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Res 61:533–616. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC232623/ . Accessed March 2018 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...