Classification of First-Episode Schizophrenia Using Wavelet Imaging Features
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články
PubMed
32570589
DOI
10.3233/shti200372
PII: SHTI200372
Knihovny.cz E-zdroje
- Klíčová slova
- Machine learning, neuroimaging, schizophrenia, support vector machines,
- MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- schizofrenie * MeSH
- support vector machine MeSH
- vlnková analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This work explores the design and implementation of an algorithm for the classification of magnetic resonance imaging data for computer-aided diagnosis of schizophrenia. Features for classification were first extracted using two morphometric methods: voxel-based morphometry (VBM) and deformation-based morphometry (DBM). These features were then transformed into a wavelet domain using the discrete wavelet transform with various numbers of decomposition levels. The number of features was then reduced by thresholding and subsequent selection by: Fisher's Discrimination Ratio (FDR), Bhattacharyya Distance, and Variances (Var.). A Support Vector Machine with a linear kernel was used for classification. The evaluation strategy was based on leave-one-out cross-validation.
Brno University of Technology Technická 3058 10 61600 Brno Czech Republic
Institute of Biostatistics and Analyses Ltd Czech Republic
Masaryk University Faculty of Medicine Kamenice 5 62500 Brno Czech Republic
Citace poskytuje Crossref.org