Characterization of large in-frame von Willebrand factor deletions highlights differing pathogenic mechanisms
Language English Country United States Media print
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
P01 HL081588
NHLBI NIH HHS - United States
P01 HL144457
NHLBI NIH HHS - United States
R01 HL139847
NHLBI NIH HHS - United States
MR/K015753/1
Medical Research Council - United Kingdom
PubMed
32609846
PubMed Central
PMC7362359
DOI
10.1182/bloodadvances.2018027813
PII: S2473-9529(20)31626-8
Knihovny.cz E-resources
- MeSH
- Humans MeSH
- DNA Copy Number Variations MeSH
- von Willebrand Disease, Type 1 * MeSH
- von Willebrand Diseases * diagnosis genetics MeSH
- von Willebrand Factor genetics MeSH
- Weibel-Palade Bodies MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- von Willebrand Factor MeSH
Copy number variation (CNV) is known to cause all von Willebrand disease (VWD) types, although the associated pathogenic mechanisms involved have not been extensively studied. Notably, in-frame CNV provides a unique opportunity to investigate how specific von Willebrand factor (VWF) domains influence the processing and packaging of the protein. Using multiplex ligation-dependent probe amplification, this study determined the extent to which CNV contributed to VWD in the Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease cohort, highlighting in-frame deletions of exons 3, 4-5, 32-34, and 33-34. Heterozygous in vitro recombinant VWF expression demonstrated that, although deletion of exons 3, 32-34, and 33-34 all resulted in significant reductions in total VWF (P < .0001, P < .001, and P < .01, respectively), only deletion of exons 3 and 32-34 had a significant impact on VWF secretion (P < .0001). High-resolution microscopy of heterozygous and homozygous deletions confirmed these observations, indicating that deletion of exons 3 and 32-34 severely impaired pseudo-Weibel-Palade body (WPB) formation, whereas deletion of exons 33-34 did not, with this variant still exhibiting pseudo-WPB formation similar to wild-type VWF. In-frame deletions in VWD, therefore, contribute to pathogenesis via moderate or severe defects in VWF biosynthesis and secretion.
Centre de Référence Maladie de Willebrand Hématologie Hôpital Cardiologique Lille France; and
Department of Biomedical Sciences University of Hull Hull United Kingdom
Department of Diabetes Institute for Clinical and Experimental Medicine Prague Czech Republic
Department of Environmental Science and Biomedicine Kristianstad University Kristianstad Sweden
Hämostaseology Medilys Laborgesellschaft mbH Hamburg Germany
See more in PubMed
Sadler JE, Budde U, Eikenboom JCJ, et al. ; Working Party on von Willebrand Disease Classification . Update on the pathophysiology and classification of von Willebrand disease: a report of the subcommittee on von Willebrand factor. J Thromb Haemost. 2006;4(10):2103-2114. PubMed
Hampshire DJ, Goodeve AC. The molecular basis of von Willebrand disease: the under investigated, the unexpected and the overlooked. Haematologica. 2011;96(6):798-800. PubMed PMC
Goodeve AC. The genetic basis of von Willebrand disease. Blood Rev. 2010;24(3):123-134. PubMed
Acquila M, Bottini F, DI Duca M, Vijzelaar R, Molinari AC, Bicocchi MP. Multiplex ligation-dependent probe amplification to detect a large deletion within the von Willebrand gene. Haemophilia. 2009;15(6):1346-1348. PubMed
Cabrera N, Casaña P, Cid AR, et al. . First application of MLPA method in severe von Willebrand disease. Confirmation of a new large VWF gene deletion and identification of heterozygous carriers. Br J Haematol. 2011;152(2):240-242. PubMed
Yadegari H, Driesen J, Hass M, Budde U, Pavlova A, Oldenburg J. Large deletions identified in patients with von Willebrand disease using multiple ligation-dependent probe amplification. J Thromb Haemost. 2011;9(5):1083-1086. PubMed
Yadegari H, Driesen J, Pavlova A, Biswas A, Hertfelder H-J, Oldenburg J. Mutation distribution in the von Willebrand factor gene related to the different von Willebrand disease (VWD) types in a cohort of VWD patients. Thromb Haemost. 2012;108(4):662-671. PubMed
Ahmad F, Budde U, Jan R, et al. . Phenotypic and molecular characterisation of type 3 von Willebrand disease in a cohort of Indian patients. Thromb Haemost. 2013;109(4):652-660. PubMed
Bowman M, Tuttle A, Notley C, et al. ; Association of Hemophilia Clinic Directors of Canada . The genetics of Canadian type 3 von Willebrand disease: further evidence for co-dominant inheritance of mutant alleles. J Thromb Haemost. 2013;11(3):512-520. PubMed PMC
Hampshire DJ, Abuzenadah AM, Cartwright A, et al. . Identification and characterisation of mutations associated with von Willebrand disease in a Turkish patient cohort. Thromb Haemost. 2013;110(2):264-274. PubMed PMC
Kasatkar P, Shetty S, Ghosh K. Genetic heterogeneity in a large cohort of Indian type 3 von Willebrand disease patients. PLoS One. 2014;9(3):e92575. PubMed PMC
Obser T, Ledford-Kraemer M, Oyen F, et al. . Identification and characterization of the elusive mutation causing the historical von Willebrand disease type IIC Miami. J Thromb Haemost. 2016;14(9):1725-1735. PubMed PMC
Veyradier A, Boisseau P, Fressinaud E, et al. ; French Reference Center for von Willebrand disease . A laboratory phenotype/genotype correlation of 1167 French patients from 670 families with von Willebrand disease: a new epidemiologic picture. Medicine (Baltimore). 2016;95(11):e3038. PubMed PMC
Vangenechten I, Smejkal P, Zapletal O, et al. . Analysis of von Willebrand disease in the South Moravian population (Czech Republic): results from the BRNO-VWD study. Thromb Haemost. 2019;119(4):594-605. PubMed
Sutherland MS, Cumming AM, Bowman M, et al. . A novel deletion mutation is recurrent in von Willebrand disease types 1 and 3. Blood. 2009;114(5):1091-1098. PubMed
Starke RD, Paschalaki KE, Dyer CEF, et al. . Cellular and molecular basis of von Willebrand disease: studies on blood outgrowth endothelial cells. Blood. 2013;121(14):2773-2784. PubMed PMC
Casari C, Pinotti M, Lancellotti S, et al. . The dominant-negative von Willebrand factor gene deletion p.P1127_C1948delinsR: molecular mechanism and modulation. Blood. 2010;116(24):5371-5376. PubMed
Daidone V, Saga G, Barbon G, et al. . The p.R1819_C1948delinsS mutation makes von Willebrand factor ADAMTS13-resistant and reduces its collagen-binding capacity. Br J Haematol. 2015;170(4):564-573. PubMed
Goodeve A, Eikenboom J, Castaman G, et al. . Phenotype and genotype of a cohort of families historically diagnosed with type 1 von Willebrand disease in the European study, molecular and clinical markers for the diagnosis and management of type 1 von Willebrand disease (MCMDM-1VWD). Blood. 2007;109(1):112-121. PubMed
Caron C, Mazurier C, Goudemand J. Large experience with a factor VIII binding assay of plasma von Willebrand factor using commercial reagents. Br J Haematol. 2002;117(3):716-718. PubMed
Federici AB, Canciani MT, Forza I, et al. . A sensitive ristocetin co-factor activity assay with recombinant glycoprotein Ibalpha for the diagnosis of patients with low von Willebrand factor levels. Haematologica. 2004;89(1):77-85. PubMed
Eikenboom J, Van Marion V, Putter H, et al. . Linkage analysis in families diagnosed with type 1 von Willebrand disease in the European study, molecular and clinical markers for the diagnosis and management of type 1 VWD. J Thromb Haemost. 2006;4(4):774-782. PubMed
Tosetto A, Rodeghiero F, Castaman G, et al. . A quantitative analysis of bleeding symptoms in type 1 von Willebrand disease: results from a multicenter European study (MCMDM-1 VWD). J Thromb Haemost. 2006;4(4):766-773. PubMed
Eikenboom J, Federici AB, Dirven RJ, et al. ; MCMDM-1VWD Study Group . VWF propeptide and ratios between VWF, VWF propeptide, and FVIII in the characterization of type 1 von Willebrand disease. Blood. 2013;121(12):2336-2339. PubMed PMC
Budde U, Schneppenheim R, Eikenboom J, et al. . Detailed von Willebrand factor multimer analysis in patients with von Willebrand disease in the European study, molecular and clinical markers for the diagnosis and management of type 1 von Willebrand disease (MCMDM-1VWD). J Thromb Haemost. 2008;6(5):762-771. PubMed
Schindelin J, Arganda-Carreras I, Frise E, et al. . Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-682. PubMed PMC
Nielsen H. Predicting secretory proteins with SignalP. Methods Mol Biol. 2017;1611(1):59-73. PubMed
Lek M, Karczewski KJ, Minikel EV, et al. ; Exome Aggregation Consortium . Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285-291. PubMed PMC
Verweij CL, Diergaarde PJ, Hart M, Pannekoek H. Full-length von Willebrand factor (vWF) cDNA encodes a highly repetitive protein considerably larger than the mature vWF subunit. EMBO J. 1986;5(8):1839-1847. PubMed PMC
Carvalho CMB, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet. 2016;17(4):224-238. PubMed PMC
Pruss CM, Golder M, Bryant A, et al. . Pathologic mechanisms of type 1 VWD mutations R1205H and Y1584C through in vitro and in vivo mouse models. Blood. 2011;117(16):4358-4366. PubMed PMC
Legendre P, Navarrete A-M, Rayes J, et al. . Mutations in the A3 domain of von Willebrand factor inducing combined qualitative and quantitative defects in the protein. Blood. 2013;121(11):2135-2143. PubMed
Ewenstein BM, Inbal A, Pober JS, Handin RI. Molecular studies of von Willebrand disease: reduced von Willebrand factor biosynthesis, storage, and release in endothelial cells derived from patients with type I von Willebrand disease. Blood. 1990;75(7):1466-1472. PubMed
Valentijn KM, Eikenboom J. Weibel-Palade bodies: a window to von Willebrand disease. J Thromb Haemost. 2013;11(4):581-592. PubMed
Gustafsson MGL, Shao L, Carlton PM, et al. . Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J. 2008;94(12):4957-4970. PubMed PMC
Torisu T, Torisu K, Lee IH, et al. . Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat Med. 2013;19(10):1281-1287. PubMed PMC
McKinnon TAJ, Goode EC, Birdsey GM, et al. . Specific N-linked glycosylation sites modulate synthesis and secretion of von Willebrand factor. Blood. 2010;116(4):640-648. PubMed
Purvis AR, Sadler JE. A covalent oxidoreductase intermediate in propeptide-dependent von Willebrand factor multimerization. J Biol Chem. 2004;279(48):49982-49988. PubMed
von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985;184(1):99-105. PubMed
Groeneveld DJ, Wang J-W, Mourik MJ, et al. . Storage and secretion of naturally occurring von Willebrand factor A domain variants. Br J Haematol. 2014;167(4):529-540. PubMed
Castaman G, Lethagen S, Federici AB, et al. . Response to desmopressin is influenced by the genotype and phenotype in type 1 von Willebrand disease (VWD): results from the European Study MCMDM-1VWD. Blood. 2008;111(7):3531-3539. PubMed
Huang R-H, Wang Y, Roth R, et al. . Assembly of Weibel-Palade body-like tubules from N-terminal domains of von Willebrand factor. Proc Natl Acad Sci USA. 2008;105(2):482-487. PubMed PMC
Wang J-W, Groeneveld DJ, Cosemans G, et al. . Biogenesis of Weibel-Palade bodies in von Willebrand’s disease variants with impaired von Willebrand factor intrachain or interchain disulfide bond formation. Haematologica. 2012;97(6):859-866. PubMed PMC
Lopes da Silva M, O’Connor MN, Kriston-Vizi J, et al. . Type II PI4-kinases control Weibel-Palade body biogenesis and von Willebrand factor structure in human endothelial cells. J Cell Sci. 2016;129(10):2096-2105. PubMed PMC