Long-term uninterrupted enzyme replacement therapy prevents liver disease in murine model of severe homocystinuria

. 2020 Sep ; 41 (9) : 1662-1670. [epub] 20200715

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32623804

Classical homocystinuria (HCU) is an inborn error of metabolism caused by loss of cystathionine β-synthase (CBS) activity with the concomitant buildup of homocysteine. In knockout (KO) mice, a mouse model of HCU, complete lack of CBS is neonatally lethal. Administration of OT-58, an enzyme therapy for HCU, during the first 5 weeks of life rescued KO mice survival by preventing liver disease. Here, we studied the impact of a long-term uninterrupted OT-58 treatment or its absence beyond the neonatal period on liver pathology and metabolism. Plasma and liver metabolites of KO mice on OT-58 treatment were substantially improved or normalized compared with those receiving vehicle. Increased plasma activities of alanine aminotransferase and aspartate aminotransferase of vehicle-injected KO mice suggested the progression of liver damage with age and lack of treatment. At 3 months of age, liver histology showed no signs of hepatopathy in both vehicle- and OT-58-treated KO mice. However, moderate to severe liver disease, characterized by steatosis, hepatocellular necroses, disorganized endoplasmic reticulum, and swollen mitochondria, developed in 6-month-old vehicle-injected KO mice. KO mice on OT-58 treatment remained asymptomatic and were indistinguishable from age-matched healthy controls. Long-term uninterrupted OT-58 treatment was essential to prevent severe liver disease in the KO mouse model of HCU.

Zobrazit více v PubMed

Allen, R. H., Stabler, S. P., & Lindenbaum, J. (1993). Serum betaine, N,N-dimethylglycine and N-methylglycine levels in patients with cobalamin and folate deficiency and related inborn errors of metabolism. Metabolism: Clinical and Experimental, 42, 1448-1460.

Anbu, A. T., Mercer, J., & Wraith, J. E. (2006). Effect of discontinuing of laronidase in a patient with mucopolysaccharidosis type I. Journal of Inherited Metabolic Disease, 29(1), 230-231. https://doi.org/10.1007/s10545-006-0237-8

Arning, E., & Bottiglieri, T. (2016). Quantitation of S-adenosylmethionine and S-adenosylhomocysteine in plasma using liquid chromatography-electrospray tandem mass spectrometry. Methods in Molecular Biology, 1378, 255-262. https://doi.org/10.1007/978-1-4939-3182-8_27

Bublil, E. M., Majtan, T., Park, I., Carrillo, R. S., Hulkova, H., Krijt, J., … Kraus, J. P. (2016). Enzyme replacement with PEGylated cystathionine beta-synthase ameliorates homocystinuria in murine model. Journal of Clinical Investigation, 126(6), 2372-2384. https://doi.org/10.1172/JCI85396

Gaull, G. E., & Schaffner, F. (1971). Electron microscopic changes in hepatocytes of patients with homocystinuria. Pediatric Research, 5, 23-32.

Gaull, G. E., Sturman, J. A., & Schaffner, F. (1974). Homocystinuria due to cystathionine synthase deficiency: Enzymatic and ultrastructural studies. Journal of Pediatrics, 84, 381-390.

Goldblatt, J., Fletcher, J. M., McGill, J., Szer, J., & Wilson, M. (2016). Interruption of enzyme replacement therapy in Gaucher disease. South African Medical Journal, 106(6 Suppl 1), S79-S81. https://doi.org/10.7196/SAMJ.2016.v106i6.11002

Kruger, W. D. (2017). Cystathionine beta-synthase deficiency: Of mice and men. Molecular Genetics and Metabolism, 121(3), 199-205. https://doi.org/10.1016/j.ymgme.2017.05.011

Lin, N. C., Niu, D. M., Loong, C. C., Hsia, C. Y., Tsai, H. L., Yeh, Y. C., … Liu, C. S. (2012). Liver transplantation for a patient with homocystinuria. Pediatric Transplantation, 16(7), E311-E314. https://doi.org/10.1111/j.1399-3046.2012.01666.x

Maclean, K. N., Sikora, J., Kozich, V., Jiang, H., Greiner, L. S., Kraus, E., … Kraus, J. P. (2010). Cystathionine beta-synthase null homocystinuric mice fail to exhibit altered hemostasis or lowering of plasma homocysteine in response to betaine treatment. Molecular Genetics and Metabolism, 101(2-3), 163-171. https://doi.org/10.1016/j.ymgme.2010.06.007

Majtan, T., Hulkova, H., Park, I., Krijt, J., Kozich, V., Bublil, E. M., & Kraus, J. P. (2017). Enzyme replacement prevents neonatal death, liver damage, and osteoporosis in murine homocystinuria. FASEB Journal, 31(12), 5495-5506. https://doi.org/10.1096/fj.201700565R

Majtan, T., Park, I., Carrillo, R. S., Bublil, E. M., & Kraus, J. P. (2017). Engineering and characterization of an enzyme replacement therapy for classical homocystinuria. Biomacromolecules, 18(6), 1747-1761. https://doi.org/10.1021/acs.biomac.7b00154

Morris, A. A., Kozich, V., Santra, S., Andria, G., Ben-Omran, T. I., Chakrapani, A. B., … Chapman, K. A. (2017). Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. Journal of Inherited Metabolic Disease, 40(1), 49-74. https://doi.org/10.1007/s10545-016-9979-0

Mudd, S. H., Levy, H. L., & Kraus, J. P. (2001). Disorders of transsulfuration. In C. R. Scriver, A. L. Beaudet, W. S. Sly, D. Valle, B. Childs, K. Kinzler & B. Vogelstein (Eds.), The metabolic and molecular bases of inherited disease (8 ed., pp. 2007-2056). New York: McGraw-Hill.

Snyderman, S. E. (2006). Liver failure and neurologic disease in a patient with homocystinuria. Molecular Genetics and Metabolism, 87(3), 210-212. https://doi.org/10.1016/j.ymgme.2005.10.010

Walter, J. H., Wraith, J. E., White, F. J., Bridge, C., & Till, J. (1998). Strategies for the treatment of cystathionine β-synthase deficiency: The experience of the Willink biochemical genetics unit over the past 30 years. European Journal of Pediatrics, 157(Suppl 2), S71-S76.

Watanabe, M., Osada, J., Aratani, Y., Kluckman, K., Reddick, R., Malinow, M. R., & Maeda, N. (1995). Mice deficient in cystathionine β-synthase: Animal models for mild and severe homocyst(e)inemia. Proceedings of the National Academy of Sciences of the United States of America, 92, 1585-1589.

Yang, R., Qu, C., Zhou, Y., Konkel, J. E., Shi, S., Liu, Y., … Shi, S. (2015). Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity, 43(2), 251-263. https://doi.org/10.1016/j.immuni.2015.07.017

Yap, S., Boers, G. H., Wilcken, B., Wilcken, D. E., Brenton, D. P., Lee, P. J., … Naughten, E. R. (2001). Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: A multicenter observational study. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(12), 2080-2085.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...