Application of INADEQUATE NMR techniques for directly tracing out the carbon skeleton of a natural product
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32671944
DOI
10.1002/pca.2976
Knihovny.cz E-zdroje
- Klíčová slova
- 13C-13C connectivity, 1JCC coupling, 2D NMR, CASE/PANACEA, INADEQUATE, cryoprobe, natural product, structure elucidation,
- MeSH
- biologické přípravky * MeSH
- izotopy uhlíku MeSH
- kostra MeSH
- magnetická rezonanční spektroskopie MeSH
- metabolomika MeSH
- uhlík * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické přípravky * MeSH
- izotopy uhlíku MeSH
- uhlík * MeSH
INTRODUCTION: Nuclear magnetic resonance (NMR) measurement of 1 JCC coupling by two-dimensional (2D) INADEQUATE (incredible natural abundance double quantum transfer experiment), which is a special case of double-quantum (DQ) spectroscopy that offers unambiguous determination of 13 C-13 C spin-spin connectivities through the DQ transitions of the spin system, is especially suited to solving structures rich in quaternary carbons and poor in hydrogen content (Crews rule). OBJECTIVE: To review published literature on the application of NMR methods to determine structure in the liquid-state, which specifically considers the interaction of a pair of carbon-13 (13 C) nuclei adjacent to one another, to allow direct tracing out of contiguous carbon connectivity using 2D INADEQUATE. METHODOLOGY: A comprehensive literature search was implemented with various databases: Web of Knowledge, PubMed and SciFinder, and other relevant published materials including published monographs. The keywords used, in various combinations, with INADEQUATE being present in all combinations, in the search were 2D NMR, 1 JCC coupling, natural product, structure elucidation, 13 C-13 C connectivity, cryoprobe and CASE (computer-assisted structure elucidation)/PANACEA (protons and nitrogen and carbon et alia). RESULTS: The 2D INADEQUATE continues to solve "intractable" problems in natural product chemistry, and using milligram quantities with cryoprobe techniques combined with CASE/PANACEA experiments can increase machine time efficiency. The 13 C-13 C-based structural elucidation by dissolution single-scan dynamic nuclear polarisation NMR can overcome disadvantages of 13 C insensitivity at natural abundance. Selected examples have demonstrated the trajectory of INADEQUATE spectroscopy from structural determination to clarification of metabolomics analysis and use of DFT (density functional theory) and coupling constants to clarify the connectivity, hybridisation and stereochemistry within natural products. CONCLUSIONS: Somewhat neglected over the years because of perceived lack of sensitivity, the 2D INADEQUATE NMR technique has re-emerged as a useful tool for solving natural products structures, which are rich in quaternary carbons and poor in hydrogen content.
Zobrazit více v PubMed
Djerassi C. Natural Product Structure Elucidation: 1950-2000. In: Fleischhacker W, Schönfeld T, eds. Pioneering Ideas for the Physical and Chemical Sciences. Boston, MA: Springer; 1997:15-24.
Fischer H. On Haemin and the Relationships between Haemin and Chlorophyll. Nobel Lectures, Chemistry 1922-1941. 1. Singapore: World Scientific; 1999.159-186. https://www.worldscientific.com/worldscibooks/10.1142/3731
Karrer P. Organic Chemistry (trans. by A. J. Mee). 4th ed. Amsterdam: Elsevier; 1950.
Robinson R. The constitution of strychnine. Experientia. 1946;2(1):28-29. https://doi.org/10.1007/BF02154708
Briggs LH, Openshaw HT, Robinson R. Strychnine and brucine. Part XLII. Constitution of the neo-series of bases and their oxidation products. J Chem Soc. 1946;n/a:903-908. https://doi.org/10.1039/JR9460000903
Openshaw HT, Robinson R. Constitution of srychnine and the biogenetic relationship of strychnine and quinine. Nature. 1946;157(3988):438-438. https://doi.org/10.1038/157438a0
Woodward RB, Brehm WJ, Nelson AL. The structure of strychnine. J Am Chem Soc. 1947;69(9):2250-2250. https://doi.org/10.1021/ja01201a526
Woodward RB, Cava MP, Ollis WD, Hunger A, Daeniker HU, Schenker K. The total synthesis of strychnine. J Am Chem Soc. 1954;76(18):4749-4751. https://doi.org/10.1021/ja01647a088
Woodward RB, Cava MP, Ollis WD, Hunger A, Daeniker HU, Schenker K. The total synthesis of strychnine. Tetrahedron. 1963;19(2):247-288. https://doi.org/10.1016/s0040-4020(01)98529-1
Benfey OT, Morris PJT. Robert Burns Woodward: Architect and Artist in the World of Molecules. Philadelphia: Chemical Heritage Foundation, 470 pages 2001.
Davis AM, Teague SJ, Kleywegt GJ. Application and limitations of X-ray crystallographic data in structure-based ligand and drug design. Angew Chem Int Ed Engl. 2003;42(24):2718-2736.
Jones CG, Martynowycz MW, Hattne J, et al. The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination. ACS Central Science. 2018;4(11):1587-1592. https://doi.org/10.1021/acscentsci.8b00760.
Nannenga BL, Gonen T. The cryo-EM method microcrystal electron diffraction (MicroED). Nat Methods. 2019;16(5):369-379. https://doi.org/10.1038/s41592-019-0395-x.
Nakanishi K, Iwashita T. Natural Products. Chichester: John Wiley & Sons, doi:https://doi.org/10.1002/9780470034590.emrstm0340, 2007.
Nicolaou KC, Snyder SA. Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew Chem Int Ed Engl. 2005;44(7):1012-1044.
White KN, Amagata T, Oliver AG, Tenney K, Wenzel PJ, Crews P. Structure revision of spiroleucettadine, a sponge alkaloid with a bicyclic core meager in H-atoms. J Org Chem. 2008;73(22):8719-8722.
Buddrus J, Bauer H. Direct identification of the carbon skeleton of organic compounds using double quantum coherence 13C-NMR spectroscopy. The INADEQUATE pulse sequence. Angew Chem Int Ed Engl. 1987;26:625-642.
Martin GE, Zektzer AS. Two-dimensional NMR Methods for establishing molecular connectivity. Weinheim: Wiley-VCH; 1988:1-357.
Li D, Owen NL. Structure determination using the NMR “inadequate” technique. Adv Mol Struct Res. 1996;2:191-211.
Buddrus J. In: Grant DM, Harris RK, eds. INADEQUATE experiment, in Encyclopedia of nuclear magnetic resonance. Vol.2491 New York: Wiley; 1996.
Buddrus J, Lambert J. Connectivities in molecules by INADEQUATE: recent developments. Magn Reson Chem. 2002;40(1):3-23.
Uhrin D. Recent developments in liquid-state INADEQUATE studies. Annu Rep NMR Spectrosc. 2010;70:1-34.
Bax A, Freeman R, Kempsell SP. Natural abundance 13C-13C coupling observed via double quantum coherence. J Am Chem Soc. 1980;102:4849-4851.
Bax A, Freeman R, Frenkiel TA. An NMR technique for tracing out the carbon skeleton of an organic molecule. J Am Chem Soc. 1981;103:2102-2104.
Lauterbur PC. C13 nuclear magnetic resonance spectra. J Chem Phys1957. 1957;26(1):217-218.
Parella T, Sánchez-Ferrando F. Improved multiplicity-edited ADEQUATE experiments. J Magn Reson. 1997;166(1):123-128.
Hatanaka H, Terao T, Hashi T. Excitation and detection of coherence between forbidden levels in three-level spin system by multi-step processes. J Physical Soc Japan. 1975;39:835-836.
Aue WP, Bartholdi E, Emst RR. Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J Chem Phys. 1976;64:2229-2246.
Vega S, Pines A. Operator formalism for double quantum NMR. J Chem Phys. 1977;66:5624-5644.
Bax A, Freeman R. Investigation of 13C-13C coupling in natural abundance samples: the strong coupling case. J Magn Reson. 1980;41:507-511.
Kumar A, Welti D, Ernst RR. Imaging of macroscopic objects by NMR Fourier zeugmatography. Naturwissenschaften. 1975;62:34-34.
Bax A, Freeman R, Frenkiel TA, Levitt MH. Assignment of carbon-13 NMR spectra via double-quantum coherence. J Magn Reson. 1981;43:478-483.
Pfeffer PE, Valentine KM, Parrish FW. Deuterium-induced differential isotope shift carbon-13 NMR. 1. Resonance reassignments of mono- and disaccharides. J Am Chem Soc. 1979;101:1265-1274.
Jin K, Uhrın D. 13C-detected IPAP-INADEQUATE for simultaneous measurement of one-bond and long-range scalar or residual dipolar coupling constants. Magn Reson Chem. 2007;45(8):628-633.
Powell J, Valenti D, Bobnar H, et al. Evaluating the accuracy of theoretical one-bond 13 C13 C scalar couplings and their ability to predict structure in a natural product. Magn Reson Chem. 2017;55(11):979-989.https://onlinelibrary.wiley.com/doi/abs/10.1002/mrc.4616.
Ballio A, Barcellona S, Santurbano B. 5-Methylmellein, a new natural dihydroisocoumarin. Tetrahedron Lett. 1966;7:3723-3726.
Bifulco G, Riccio R, Martin GE, Buevich AV, Williamson RT. Quantum chemical calculations of 1J(CC) coupling constants for the stereochemical determination of organic compounds. Org Lett. 2013;15(3):654-657.
Willker W, Leibfritz D. Gradient selection of coherences in experiments with carbon detection. Magn Reson Chem. 1994;32:665-672.
Bakhmutov VI. Practical NMR Relaxation for Chemists. Chichester: John Wiley & Sons; 2005.
Kowalewski J, Maler L. Nuclear Spin Relaxation in Liquids. New York: Taylor & Francis; 2006.
Mattiello DL, Freeman R. Blood, sweat, and tears. Toward a rehabilitation of the INADEQUATE experiment. J Magn Reson. 1997;135(2):514-521.
Ramaswamy V, Hooker JW, Withers RS, Nast RE, Brey WW, Edison AS. Development of a C-optimized 1.5-mm high temperature superconducting NMR probe. JMagn Reson. 2013;235C:58-65.
Neszmelyi A, Hull WE, Lukacs G. Natural abundance 13C13C coupling constants observed via double quantum coherence. The two-dimensional 'inadequate' experiment for 13CNMR spectral analysis of erythronolide-B. Tetrahedron Lett. 1982;23:5071-5074.
Pinto AC, Garcez WS, Hull WE, Neszmelyi A, Lukacs G. The 2-dimensional INADEQUATE NMR experiment for carbon connectivity pattern determination of a new bisnorditerpene. J Chem Soc Chem Commun. 1983;8:464-465.
Boulos L. Medicinal Plants of North Africa. Algonac, Michigan: Reference Publications, Inc; 1983:112-112.
Elmastas M, Erenler R, Isnac B, et al. Isolation and identification of a new neo-clerodane diterpenoid from Teucrium chamaedrys L. Nat Prod Res. 2016;30(3):299-304.
García-Alvarez MC, Lukacs G, Neszmelyi A, Piozzi F, Rodríguez B, Savona G. Structure of teucroxide. Application of natural-abundance carbon-13 - carbon-13 coupling constants observed via double-quantum coherence. J Org Chem. 1983;48:5123-5126.https://pubs.acs.org/doi/abs/10.1021/jo00173a068.
Kutateladze AG, Holt T, Reddy DS. Natural products containing the oxetane and related moieties present additional challenges for structure elucidation: a DU8+ computational case study. J Org Chem. 2019;84(12):7575-7586.
Müller G, Schmiedl J, Schneider E, et al. Structure of factor S3, a metabolite of Propionibacterium shermanii derived from uroporphyrinogen. J Am Chem Soc. 1986;108:7875-7877.
Scott A. Discovering nature's diverse pathways to vitamin B12: a 35-year odyssey. J Org Chem. 2003;68(7):2529-2539.
Carmely S, Kashman Y. Neviotine-a, a new triterpene from the red sea sponge Siphonochalina siphonella. J Org Chem. 1986;51(6):784-788.
El-Beih AA, El-Desoky AH, Al-Hammady MA, et al. New inhibitors of RANKL-induced Osteoclastogenesis from the marine sponge Siphonochalina siphonella. Fitoterapia. 2018;128:43-49.
Cavalcante NB, Diego da Conceição Santos A, Guedes da Silva Almeida JR. The genus Jatropha (Euphorbiaceae): a review on secondary chemical metabolites and biological aspects. Chem Biol Interact. 2020;318:108976. https://doi.org/10.1016/j.cbi.2020.108976
Watt JM, Breyer-Brandwijk MG. The Medicinal and Poisonous Plants of Southern and Eastern Africa. 2nd ed. London: E&S Livingstone Ltd; 1962:422.
Dekker TG, Fourie TG, Matthee E, Snyckers FO, Ammann W. Studies of south African medicinal plants. Part 4. Jaherin, a new daphnane diterpene with antimicrobial properties from Jatropha zeyheri. S Afr J Chem. 1987;40(1):74-76.
Drogosz J, Janecka A. Helenalin - a aesquiterpene lactone with multidirectional activity. Curr Drug Targets. 2019;20(4):444-452.
Kusumi T, Ooi T, Walchi MR, Kakisawa H. Structure of the novel antibiotics boxazomycins A, B, and C. J Am Chem Soc. 1988;110:2954-2958.
Sommer PS, Almeida RC, Schneider K, Beil W, Süssmuth RD, Fiedler HP. Nataxazole, a new benzoxazole derivative with antitumor activity produced by Streptomyces sp. Tü 6176. J Antibiot. 2008;61(11):683-686.
Song H, Rao C, Deng Z, Yu Y, Naismith JH. The biosynthesis of the benzoxazole in nataxazole proceeds via an unstable ester and has synthetic utility. Angew Chem Int Ed Engl. 2020;59(15):6054-6061.
Senior MM, Williamson RT, Martin GE. Using HMBC and ADEQUATE NMR data to define and differentiate long-range coupling pathways: is the Crews rule obsolete? J Nat Prod. 2013;76(11):2088-2093.
Mulholland DA, Koorbanally C, Crouch NR, Sandor P. Xanthones from Drimiopsis maculata. J Nat Prod. 2004;67(10):1726-1728.
Fujita Y, Kasuya A, Matsushita Y, et al. Structural elucidation of A-74528, an inhibitor for 2′,5′-phosphodiesterase isolated from Streptomyces sp. Bioorg Med Chem Lett. 2005;15(19):4317-4321.
Havlik J, Budesinsky M, Kloucek P, et al. Norsesquiterpene hydrocarbon, chemical composition and antimicrobial activity of Rhaponticum carthamoides root essential oil. Phytochemistry. 2009;70(3):414-418.
Hörtensteiner S, Hauenstein M, Kräutler B. Chapter seven - chlorophyll breakdown - regulation, biochemistry and phyllobilins as its products. Adv Bot Res. 2019;90:213-271.
Kuai B, Chen J, Hörtensteiner S. The biochemistry and molecular biology of chlorophyll breakdown. J Exp Bot. 2018;69(4):751-767.
Wakana D, Kato H, Tadayuki M, Sasaki N, Ozeki Y, Goda Y. NMR-based characterization of a novel yellow chlorophyll catabolite, Ed-YCC, isolated from Egeria densa. Tetrahedron Lett. 2014;55(18):2982-2985.
Boudesocque-Delaye L, Agostinho D, Bodet C, et al. Antibacterial polyketide heterodimers from Pyrenacantha kaurabassana tubers. J Nat Prod. 2015;78(4):597-603.
Liu R, Wang Y-N, Xie B-J, Pan Q. A new p-terphenyl derivative from the mushroom Thelephora vialis. Helv Chim Acta. 2015;98(8):1075-1078.
Harper JK, Pope GM. Recent developments in the use of one bond CC couplings in structure Determination. Annu. Rep. NMR Spectrosc. 2019;98:193-238.
Block E, Dethier B, Bechand B, et al. Ajothiolanes: 3,4-dimethylthiolane natural products from garlic (Allium sativum). J Agric Food Chem. 2018;66(39):10193-10204.https://pubs.acs.org/doi/10.1021/acs.jafc.8b03638.
García-Huertas P, Olmo F, Sánchez-Moreno M, Dominguez J, Chahboun R, Triana-Chávez O. Activity in vitro and in vivo against Trypanosoma cruzi of a furofuran lignan isolated from Piper jericoense. Exp Parasitol. 2018;189:34-42.
Caruana AMN, Amzil Z. Chapter 13 - Microalgae and Toxins. In: Levine IA, Fleurence J, eds. Microalgae in Health and Disease Prevention. New York: Academic Press; 2018:263-305.
Lee MS, Repeta DJ, Nakanishi K, Zagorski MG. Biosynthetic origins and assignments of carbon 13 NMR peaks of brevetoxin B. J Am Chem Soc. 1986;108(24):7855-7856.
Nicolaou K. The total synthesis of brevetoxin B: a twelve-year odyssey in organic synthesis. Angew Chem Int Ed Engl. 1996;35:588-607.
Bringmann G, Irmer A, Rüdenauer S, Mutanyatta-Comar J, Seupel R, Feineis D. 5′-O-Methyldioncophylline D, a 7,8′-coupled naphthylisoquinoline alkaloid from callus cultures of Triphyophyllum peltatum, and its biosynthesis from a late-stage tetrahydroisoquinoline precursor. Tetrahedron. 2016;72:2906-2912.
Clendinen CS, Pasquel C, Ajredini R, Edison AS. (13)C NMR metabolomics: INADEQUATE network analysis. Anal Chem. 2015;87(11):5698-5706.
Krishnamurthy VV, Russell DJ, Hadden CE, Martin GE. 2J,(3)J-HMBC: a new long-range heteronuclear shift correlation technique capable of differentiating (2)J(CH) from (3)J(CH) correlations to protonated carbons. J Magn Reson. 2000;146(1):232-239.
Nyberg NT, Duus JØ, Sørensen OW. Heteronuclear two-bond correlation: suppressing heteronuclear three-bond or higher NMR correlations while enhancing two-bond correlations even for vanishing 2JCH. J Am Chem Soc. 2005;127:6154-6155.
Nyberg NT, Duus JØ, Sørensen OW. Editing of H2BC NMR spectra. Magn Reson Chem. 2005;43(12):971-974.
Benie AJ, Sørensen OW. HAT HMBC: a hybrid of H2BC and HMBC overcoming shortcomings of both. J Magn Reson. 2007;184(2):315-321.
Martin GE. Annual Reports on NMR Spectroscopy. In: Webb GA, ed. Using 1,1- and 1,n-ADEQUATE 2D NMR Data in Structure Elucidation Protocols. Vol.74 London: Elsevier; 2011:215-291.
Lindel T, Junker J, Köck M. COCON: from NMR correlation data to molecular constitutions. J Mol Model. 1997;3:364-368.
Junker J, Maier W, Lindel T, Köck M. Computer-assisted constitutional assignment of large molecules: Cocon analysis of ascomycin. Org Lett. 1999;1(5):737-740.
Meyer S, Köck M. NMR studies of phakellins and isophakellins. J Nat Prod. 2008;71(9):1524-1529.
Cheatham SF, Kline M, Sasaki RR, Blinov KA, Elyashberg M, Molodtsov SG. Enhanced automated structure elucidation by inclusion of two-bond specific data. Magn Reson Chem. 2010;48(8):571-574.
Roginkin MS, Ndukwe IE, Craft DL, et al. Developing nonuniform sampling strategies to improve sensitivity and resolution in 1,1-ADEQUATE experiments. Magn Reson Chem. 2020;58(7):625-640.https://doi.org/10.1002/mrc.4995.
Nishida T, Enzell CR, Morris GA. Concerted use of homo- and hetero-nuclear 2D NMR: 13C and 1H assignment of sucrose octaacetate. Magn Reson Chem. 1986;24:179-182.
Kupče Ē, Mote KR, Madhu PK. Experiments with direct detection of multiple FIDs. J Magn Reson. 1997;304:16-34.
Kupče Ē, Freeman R. Molecular structure from a single NMR experiment. J Am Chem Soc. 2008;130:10788-10792.
Kupče Ē, Freeman R. Molecular structure from a single NMR sequence (fast-PANACEA). J Magn Reson. 2010;206:147-153.
Kupče Ē, Claridge TDW. Molecular structure from a single NMR Supersequence. Chem Commun. 2018;54(52):7139-7142.
Burns DC, Mazzola EP, Reynolds WF. The role of computer-assisted structure elucidation (CASE) programs in the structure elucidation of complex natural products. Nat Prod Rep. 2019;36(6):919-933.
Soong R, Pautler BG, Moser A, et al. CASE (computer-assisted structure elucidation) study for an undergraduate organic chemistry class. J Chem Educ. 2020;97:855-860.https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.9b00498.
Buevich AV, Elyashberg ME. Enhancing computer-assisted structure elucidation with DFT analysis of J-couplings. Magn ResonChem. 2020;58(6):594-606.
Ismail FMD, Nahar L, Sarker SD. Chapter 7 - Prediction of Structure Based on Spectral Data Using Computational Techniques. In: Sarker SD, Nahar l, eds. Computational Phytochemistry. Amsterdam: Elsevier; 2018:193-229.
Otikovs M, Olsen GL, Kupče ER, Frydman L. Natural abundance, single-scan 13C-13C-based structural elucidations by dissolution DNP NMR. J Am Chem Soc. 2019;141(5):1857-1861.
Burns DC, Reynolds WF. Minimizing the risk of deducing wrong natural product structures from NMR data. Magnetic Resonance in Chemistry. 2019. https://doi.org/10.1002/mrc.4933.
Paruzzo FM, Hofstetter A, Musil F, De S, Ceriotti M, Emsley L. Chemical shifts in molecular solids by machine learning. Nat Commun. 2018;9(1):n/a-n/a. https://doi.org/10.1038/s41467-018-06972-x
Gerrard W, Bratholm LA, Packer MJ, Mulholland AJ, Glowacki DR, Butts CP. IMPRESSION - prediction of NMR parameters for 3-dimensional chemical structures using machine learning with near quantum chemical accuracy. Chem Sci. 2019;11(2):508-515.