Evolution of External Health Costs of Electricity Generation in the Baltic States

. 2020 Jul 22 ; 17 (15) : . [epub] 20200722

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32707758

Implementation of strict policies for mitigating climate change has a direct impact on public health as far as the external health costs of electricity generation can be reduced, thanks to the reduction of emission of typical pollutants by switching to cleaner low carbon fuels and achieving energy efficiency improvements. Renewables have lower external health costs due to the lower life cycle emission of typical air pollutants linked to electricity generation, such as SO2, NOx, particulate matter, NH3, or NMVOC (Non-methane volatile organic compounds), which all appear to have serious negative effects on human health. Our case study performed in the Baltic States analyzed the dynamics of external health costs in parallel with the dynamics of the main health indicators in these countries: life expectancy at birth, mortality rates, healthy life years, self-perceived health, and illness indicators. We employed the data for external health costs retrieved from the CASES database, as well as the health statistics data compiled from the EUROSTAT database. The time range of the study was 2010-2018 due to the availability of consistent health indicators for the EU Member States. Our results show that the decrease of external health costs had a positive impact on the increase of the self-perceived good health and reduction of long-standing illness as well as the decrease of infant death rate. Our conclusions might be useful for other countries as well as for understanding the additional benefits of climate change mitigation policies and tracking their positive health impacts. The cooperation initiatives on clean energy and climate change mitigation between countries like One Belt One Road initiative by the Chinese government can also yield additional benefits linked to the public health improvements.

Zobrazit více v PubMed

Streimikiene D., Alisauskaite-Seskiene I. Comparative Assessment of External Costs and Pollution Taxes in Baltic States, Czech Republic and Slovakia. Ekon. A Manag. 2016;XIX:4–18.

Redondo A.J.G., Collado R.R. An economic valuation of renewable electricity promoted by feed-in system in Spain. Renew. Energy. 2014;68:51–57. doi: 10.1016/j.renene.2014.01.028. DOI

Kilinc-Ata N. The evaluation of renewable energy policies across EU countries and US states: An econometric approach. Energy Sustain. Dev. 2016;31:83–90. doi: 10.1016/j.esd.2015.12.006. DOI

Bento N., Borello M., Gianfrate G. Market-pull policies to promote renewable energy: A quantitative assessment of tendering implementation. J. Clean. Prod. 2020;248:119209. doi: 10.1016/j.jclepro.2019.119209. DOI

Jorli M., van Passel S., Sadeghi H., Nasseri A., Agheli L. Estimating human health impacts and costs due to Iranian fossil fuel power plant emissions through the impact pathway approach. Energies. 2017;10:2136. doi: 10.3390/en10122136. DOI

Karimzadegan H., Rahmatian M., Farhood D., Yunesian M. Economic Valuation of Premature Mortality and Morbidity. Int. J. Environ. Res. 2007;1:128–135.

Rowe R.D., Lang C.M., Chestnut L.G., Latimer D.A., Rae D.A., Bernow S.M., White D.E. New York State Environmental Externalities Cost Study. Oceana; New York, NY, USA: 1995.

Burtraw D., Krupnick A. The True Costs of Electric Power: Summary for Policy Makers. [(accessed on 12 December 2019)]; Available online: http://www.ren21.net/Portals/0/documents/Resources/RFF-Rpt-BurtrawKrupnick.TrueCosts_Summary_web.pdf.

Abadie L.M., Chamorro J.M. Levelized Cost of Electricity: Key Drivers and Valuation Methods. Dyna. 2019;94:656.

European Commission ExternE Externalities of Energy. Vol.1: Summary; Vol.2: Methodology; Vol.3: Coal and Lignite; Vol.4: Oil and Gas; Vol.5: Nuclear; Vol.6: Wind and Hydro. [(accessed on 15 January 2020)]; Available online: https://portals.iucn.org/library/node/22494.

Bickel P., Friedrich R. ExternE Externalities of Energy Methodology 2005 Update. [(accessed on 25 November 2019)]; Available online: http://www.externe.info/externe_2006/brussels/methup05a.pdf.

European Commission ExternE Volume 10 National Implementation. [(accessed on 23 December 2019)]; Available online: http://www.externe.info/externe_d7/sites/default/files/vol10.pdf.

CASES D.06.1 Database of Full Costs for EU, with External and Private Costs. [(accessed on 2 January 2020)]; Available online: http://www.feem-project.net/cases/downloads_deliverables.php.

NEED External Costs from Emerging Electricity Generation Technologies. Deliverable n° 6.1-RSla, Sustainable Energy Systems. [(accessed on 24 March 2020)]; Available online: http://www.needs-project.org/docs/RS1a%20D6_1%20External%20costs%20of%20reference%20technologies%2024032009.pdf.

Sundqvist T., Soderholm P. Valuing the environmental impacts of electricity generation: A critical survey. J. Energy Lit. 2002;8:3–41.

Samadi S. The social costs of electricity generation-categorising different types of costs and evaluating their respective relevance. Energies. 2017;10:356. doi: 10.3390/en10030356. DOI

Pope C.A., Dockery D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006;56:709–742. doi: 10.1080/10473289.2006.10464485. PubMed DOI

Gauderman W.J., Avol E., Gilliland F., Vora H., Thomas D., Berhane K., McConnell R., Kuenzli N., Lurmann F., Rappaport E., et al. The effect of air pollution on lung development from 10 to 18 years of age. N. Engl. J. Med. 2004;351:1057–1067. doi: 10.1056/NEJMoa040610. PubMed DOI

Kim K.-H., Kabir E., Kabir S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015;74:136–143. doi: 10.1016/j.envint.2014.10.005. PubMed DOI

Anderson J.O., Thundiyil J.G., Stolbach A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012;8:166–175. doi: 10.1007/s13181-011-0203-1. PubMed DOI PMC

Sousa S.I.V., Alvim-Ferraz M.C.M., Martins F.G. Health effects of ozone focusing on childhood asthma: What is now known-A review from an epidemiological point of view. Chemosphere. 2013;90:2051–2058. doi: 10.1016/j.chemosphere.2012.10.063. PubMed DOI

Torfs R., Hurley F., Miller B., Rabl A. A Set of Concentration-Response Functions. [(accessed on 10 April 2020)]; Available online: http://www.needs-project.org/2009/Deliverables/Rs1b%20D3.7.pdf.

National Research Council . Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use. The National Academies Press; Washington, DC, USA: 2010.

Epstein P.R., Buonocore J.J., Eckerle K., Hendryx M., Stout B.M., III, Heinberg R., Clapp R.W., May B., Reinhart N.L., Ahem M.M., et al. Full cost accounting for the life cycle of coal. Ann. N. Y. Acad. Sci. 2011;1219:73–98. doi: 10.1111/j.1749-6632.2010.05890.x. PubMed DOI

Pope C.A., Burnett R.T., Thun M.J., Calle E.E., Krewski D., Ito K., Thurston G.D. Lung cancer, cardiopulmonary mortality, and longterm exposure to fine particulate air pollution. JAMA. 2002;287:1132–1141. doi: 10.1001/jama.287.9.1132. PubMed DOI PMC

Schwartz J., Coull B., Laden R., Ryan L. The effect of dose and timing of dose on the association between airborne particles and survival. Environ. Health Perspect. 2008;116:64–69. doi: 10.1289/ehp.9955. PubMed DOI PMC

Machol B., Rizk S. Economic value of U.S. fossil fuel electricity health impacts. Environ. Int. 2013;52:75–80. doi: 10.1016/j.envint.2012.03.003. PubMed DOI

Vrhovcak M.B., Tomsic Z., Debrecin N. External costs of electricity production: Case study Croatia. Energy Policy. 2005;33:1385–1395. doi: 10.1016/j.enpol.2003.12.015. DOI

Dimitrijevic Z., Tatic K., Knezevic A., Salihbegovic I. External costs from coal-fired thermal plants and sulphur dioxide emission limit values for new plants in Bosnia and Herzegovina. Energy Policy. 2011;39:3036–3041. doi: 10.1016/j.enpol.2011.03.068. DOI

Bosnjakovic M., Tadijanovic V. Environment Impact of a Concentrated Solar Power Plant. Teh. Glas. 2019;31:68–74. doi: 10.31803/tg-20180911085644. DOI

Abadie L.M., Goicoechea N. Review and analysis of energy storage systems by hydro-pumping to support a mix of electricity generation with a high percentage of renewables. Dyna. 2019;94:669–675.

Georgakellos D.A. Impact of a possible environmental externalities internalisation on energy prices: The case of the greenhouse gases from the Greek electricity sector. Energy Econ. 2010;32:202–209. doi: 10.1016/j.eneco.2009.05.010. DOI

Karimzadegan H., Rahmatian M., Farsiabi M.M., Meiboudi H. Social cost of fossil-based electricity generation plants in Iran. Environ. Eng. Manag. J. 2015;14:2373–2382.

Mahapatra D., Shukla P., Dhar S. External cost of coal based electricity generation: A tale of Ahmedabad city. Energy Policy. 2012;49:253–265. doi: 10.1016/j.enpol.2012.06.014. DOI

Turtos Carbonell L., Meneses Ruiz E., Sanchez Gacita M., Rivero Oliva J., Díaz Rivero N. Assessment of the impacts on health due to the emissions of Cuban power plants that use fossil fuel oils with high content of sulfur. Estim. Extern. Costs Atmos. Environ. 2007;41:2202–2213. doi: 10.1016/j.atmosenv.2006.10.062. DOI

Spalding-Fecher R., Matibe D.K. Electricity and externalities in South Africa. Energy Policy. 2003;31:721–734. doi: 10.1016/S0301-4215(02)00123-4. DOI

Macías P., Islas J. Damage costs produced by electric power plants: An externality valuation in the Mexico City metropolitan area. Sci. Total Environ. 2010;408:4511–4523. doi: 10.1016/j.scitotenv.2010.06.036. PubMed DOI

Hainoun A., Almoustafa A., Seif Aldin M. Estimating the health damage costs of Syrian electricity generation system using impact pathway approach. Energy. 2010;35:628–638. doi: 10.1016/j.energy.2009.10.034. DOI

Buke T., Kone A.C. Estimation of the health benefits of controlling air pollution from the Yatagan coal-fired power plant. Environ. Sci. Policy. 2011;14:1113–1120. doi: 10.1016/j.envsci.2011.05.014. DOI

Wang C., Zhang L., Zhou P., Chang Y., Zhou D., Pang M., Yin H. Assessing the environmental externalities for biomass- and coal-fired electricity generation in China: A supply chain perspective. J. Environ. Manag. 2019;246:758–767. doi: 10.1016/j.jenvman.2019.06.047. PubMed DOI

Restrepo Á., Bazzo E., Miyake R. A life cycle assessment of the Brazilian coal used for electric power generation. J. Clean. Prod. 2015;92:179–186. doi: 10.1016/j.jclepro.2014.12.065. DOI

Aguirre-Villegas H.A., Benson C.H. Case history of environmental impacts of an Indonesian coal supply chain. J. Clean. Prod. 2017;157:47–56. doi: 10.1016/j.jclepro.2017.03.232. DOI

Rimos S., Hoadley A.F., Brennan D.J. Resource depletion impact assessment: Impacts of a natural gas scarcity in Australia. Sustain. Prod. Consum. 2015;3:45–58. doi: 10.1016/j.spc.2015.08.003. DOI

Zhu Y., Jiang S., Zhao Y., Li H., He G., Li L. Life-cycle-based water footprint assessment of coal-fired power generation in China. J. Clean. Prod. 2020;254:120098. doi: 10.1016/j.jclepro.2020.120098. DOI

Chary K., Aubin J., Guindé L., Sierra J., Blazy J. Cultivating biomass locally or importing it? LCA of biomass provision scenarios for cleaner electricity production in a small tropical island. Biomass Bioenergy. 2018;110:1–12. doi: 10.1016/j.biombioe.2018.01.009. DOI

Rafaj P., Kypreos S. Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model. Energy Policy. 2007;35:828–843. doi: 10.1016/j.enpol.2006.03.003. DOI

Klaasen G., Riahi K. Internalizing externalities of electricity generation: An analysis with MESSAGE-MACRO. Energy Policy. 2007;35:815–827. doi: 10.1016/j.enpol.2006.03.007. DOI

Karkour S., Ichisugi Y., Abeynayaka A., Itsubo N. External-Cost Estimation of Electricity Generation in G20 Countries: Case Study Using a Global Life-Cycle Impact-Assessment Method. Sustainability. 2020;12:2002. doi: 10.3390/su12052002. DOI

Murakami K., Itsubo N., Kuriyama K., Yoshida K., Tokimatsu K. Development of weighting factors for G20 countries. Part 2: Estimation of willingness to pay and annual global damage cost. Int. J. Life Cycle Assess. 2018;23:2349–2364. doi: 10.1007/s11367-017-1372-1. DOI

Huijbregts M.A.J., Steinmann Z.J.N., Elshout P.M.F., Stam G., Verones F., Vieira M., Zijp M., Hollander A., Van Zelm R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017;22:138–147. doi: 10.1007/s11367-016-1246-y. DOI

Rabl A., Spadaro J.V. External costs of energy: How much is clean energy worth? J. Sol. Energy Eng. 2016;138:1–8. doi: 10.1115/1.4033596. DOI

Hausman J. Specification Tests in Econometrics. [(accessed on 21 July 2020)];Econometrica. 1978 46:1251–1271. doi: 10.2307/1913827. Available online: https://www.jstor.org/stable/1913827. DOI

Eurostat Energy Database. [(accessed on 10 April 2020)]; Available online: https://ec.europa.eu/eurostat/web/energy/data/database.

European Observatory on Health Systems and Policies Country Health Profiles. [(accessed on 10 April 2020)]; Available online: http://www.euro.who.int/en/about-us/partners/observatory/publications/country-health-profiles.

European Commission 2030 Energy Strategy. [(accessed on 5 April 2020)]; Available online: https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2030-energy-strategy.

Lu J., Ren L., Yao S., Rong D., Skare M., Streimikis J. Renewable energy barriers and coping strategies: Evidence from the Baltic States. Sustain. Dev. 2019;28:352–367. doi: 10.1002/sd.2030. DOI

Sres S. Legal Sources on Renewables Energy. [(accessed on 10 April 2020)]; Available online: http://www.res-legal.eu/home/

CEER Status Review of Renewable and Energy Efficiency Support Schemes in Europe in 2016 and 2017. [(accessed on 11 January 2020)]; Available online: https://www.ceer.eu/documents/104400/-/-/80ff3127-8328-52c3-4d01-0acbdb2d3bed.

Ortega-lzquierdo M., del Rio P. Benefits and costs of renewable electricity in Europe. Renew. Sustain. Energy Rev. 2016;61:372–383. doi: 10.1016/j.rser.2016.03.044. DOI

Ortega M., del Rio P., Montero E.A. Assessing the benefits and costs of renewable electricity. The Spanish case. Renew. Sustain. Energy Rev. 2013;27:294–304. doi: 10.1016/j.rser.2013.06.012. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...