Phylogenetic evidence for the invasion of a commercialized European Phasmarhabditis hermaphrodita lineage into North America and New Zealand
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32804938
PubMed Central
PMC7430733
DOI
10.1371/journal.pone.0237249
PII: PONE-D-20-06376
Knihovny.cz E-zdroje
- MeSH
- biologická kontrola škůdců MeSH
- fylogeneze * MeSH
- mitochondriální DNA genetika MeSH
- Rhabditida genetika izolace a purifikace MeSH
- RNA ribozomální 16S genetika MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Nový Zéland MeSH
- Severní Amerika MeSH
- Názvy látek
- mitochondriální DNA MeSH
- RNA ribozomální 16S MeSH
Biological control (biocontrol) as a component of pest management strategies reduces reliance on synthetic chemicals, and seemingly offers a natural approach that minimizes environmental impact. However, introducing a new organism to new environments as a classical biocontrol agent can have broad and unanticipated biodiversity effects and conservation consequences. Nematodes are currently used in a variety of commercial biocontrol applications, including the use of Phasmarhabditis hermaphrodita as an agent targeting pest slug and snail species. This species was originally discovered in Germany, and is generally thought to have European origins. P. hermaphrodita is sold under the trade name Nemaslug®, and is available only in European markets. However, this nematode species was discovered in New Zealand and the western United States, though its specific origins remained unclear. In this study, we analyzed 45 nematode strains representing eight different Phasmarhabditis species, collected from nine countries around the world. A segment of nematode mitochondrial DNA (mtDNA) was sequenced and subjected to phylogenetic analyses. Our mtDNA phylogenies were overall consistent with previous analyses based on nuclear ribosomal RNA (rRNA) loci. The recently discovered P. hermaphrodita strains in New Zealand and the United States had mtDNA haplotypes nearly identical to that of Nemaslug®, and these were placed together in an intraspecific monophyletic clade with high support in maximum likelihood and Bayesian analyses. We also examined bacteria that co-cultured with the nematode strains isolated in Oregon, USA, by analyzing 16S rRNA sequences. Eight different bacterial genera were found to associate with these nematodes, though Moraxella osloensis, the bacteria species used in the Nemaslug® formulation, was not detected. This study provided evidence that nematodes deriving from the Nemaslug® biocontrol product have invaded countries where its use is prohibited by regulatory agencies and not commercially available.
Biology Centre CAS Institute of Entomology Branišovská České Budějovice Czech Republic
Crop Health and Protection National Agri Food Innovation Campus Sand Hutton York United Kingdom
Department of Biology Hong Kong Baptist University Hong Kong SAR China
Department of Integrative Biology Oregon State University Corvallis Oregon United States of America
Independent Researcher Consultant Hamilton New Zealand
Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen United Kingdom
Zobrazit více v PubMed
Hajek AE, Hurley BP, Kenis M, Garnas JR, Bush SJ, Wingfield MJ, et al. Exotic biological control agents: A solution or contribution to arthropod invasions? Biol Invasions. 2016;18: 953–969. 10.1007/s10530-016-1075-8 DOI
De Clercq P, Mason PG, Babendreier D. Benefits and risks of exotic biological control agents. BioControl. 2011;56: 681–698. 10.1007/s10526-011-9372-8 DOI
Simberloff D. Risks of biological control for conservation purposes. BioControl. 2012: 57: 263 10.1007/s10526-011-9392-4. DOI
Hoddle MS, Van Driesche RG, Sanderson JP. Biology and use of the whitefly parasitoid Encarsia formosa. Annu Rev Entomol. 1998;43(1): 645–669. 10.1146/annurev.ento.43.1.645 PubMed DOI
Simberloff D, Dayan T, Jones C, Ogura G. Character displacement and release in the small Indian mongoose, Herpestes javanicus. Ecology. 2000;81: 2086–2099. 10.1890/0012-9658(2000)081[2086:CDARIT]2.0.CO;2 DOI
Hays WST, Conant S. Biology and impacts of Pacific Island invasive species. 1. A worldwide review of effects of the small Indian mongoose, Herpestes javanicus (Carnivora: Herpestidae). Pacific Science. 2007;61:3–16.
Crossland MR, Brown GP, Anstis M, Shilton CM, Shine R. Mass mortality of native anuran tadpoles in tropical Australia due to the invasive cane toad (Bufo marinus) Biol Conserv. 2008;141: 2387–2394.
Wallace MM III, Cowie RH. Feeding Preferences of Two Predatory Snails Introduced to Hawaii and Their Conservation Implications Malacologia, 2010;53(1):135–144.
Simberloff D, Stiling P. How Risky is Biological Control? Ecology. 1996;77(7): 1965–1974.
Dlugosch KM, Parker IM. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol. 2007;17(1): 431–449. 10.1111/j.1365-294X.2007.03538.x PubMed DOI
Luong LT, Mathot KJ. Facultative parasites as evolutionary stepping-stones towards parasitic lifestyles. Biol Lett. 2019;15(4). 10.1098/rsbl.2019.0058. PubMed DOI PMC
Roderick GK, Hufbauer R, Navajas M. Evolution and biological control. Evol Appl. 2012; 5(5): 419–423. 10.1111/j.1752-4571.2012.00281.x PubMed DOI PMC
Kaya HK, Gaugler R. Entomopathogenic nematodes. Annu. Rev. Entornol. 1993;38:181–206.
Dillman AR, Chaston JM, Adams BJ, Ciche TA, Goodrich-Blair H, Stock SP, et al. An Entomopathogenic Nematode by Any Other Name. PLoS Pathog. 2012;8(3): e1002527 10.1371/journal.ppat.1002527 PubMed DOI PMC
Bedding RA. Biological Control of Sirex noctilio using the nematode Deladenus siricidicola In: Bedding RA, Akhurst RJ, Kaya HK, editors. Nematodes and the Biological Control of Insect Pests. CSIRO Publications; 1993. pp. 11–20.
Fitza KNE, Garnas JR, Lombardero MJ, Ayres MP, Krivak-Tetley FE, Ahumada R, et al. The global diversity of Deladenus siricidicola in native and non-native populations. Biol Control. 2019;132: 57–65. 10.1016/j.biocontrol.2019.01.014. DOI
Wilson MJ, Glen DM, George SK, Butler RC. Mass cultivation and storage of the rhabditid nematode Phasmarhabditis hermaphrodita, a biocontrol agent for slugs. Biocontrol Sci Technol. 1993;3(4): 513–521. 10.1080/09583159309355307 DOI
Wilson MJ, Glen DM, George SK. The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontrol Sci Technol. 1993;3(4): 503–511. 10.1080/09583159309355306 DOI
Wilson M, Rae R. Phasmarhabditis hermaphrodita as a Control Agent for Slugs In: Campos-Herrera Reditor. Nematode Pathogenesis of Insects and Other Pests. Sustainability in Plant and Crop Protection. Springer, Cham; 2015. pp. 509–521.
Wilson MJ, Glen DM, Pearce JD, Rodgers PB. Monoxenic culture of the slug parasite Phasmarhabditis hermaphrodita (Nematoda: Rhabditdae) with different bacteria in liquid and solid phase. Fundam. Appl. Nematol. 1995;18(2): 159–166.
Wilson MJ, Glen DM, George SK, Pearce JD. Selection of a bacterium for the mass production of Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae) as a biocontrol agent for slugs. Fundam. Appl. Nematol. 1995;18(5): 419–425.
Rae RG, Tourna M, Wilson MJ. The slug parasitic nematode Phasmarhabditis hermaphrodita associates with complex and variable bacterial assemblages that do not affect its virulence. J Invertebr Pathol. 2010;104(3): 222–226. 10.1016/j.jip.2010.04.008 PubMed DOI
Pieterse A, Tiedt LR, Malan AP, Ross JL. First record of Phasmarhabditis papillosa (Nematoda: Rhabditidae) in South Africa, and its virulence against the invasive slug, Deroceras panormitanum. Nematology. 2017;19(9): 1035–1050. 10.1163/15685411-00003105. DOI
Tandingan De Ley I, Holovachov O, Mc Donnell RJ, Bert W, Paine TD, De Ley P. Description of Phasmarhabditis californica n. sp. and first report of P. papillosa (Nematoda: Rhabditidae) from invasive slugs in the USA. Nematology. 2016;18(2): 175–193. 10.1163/15685411-00002952. DOI
Schneider A. Über eine Nematodenlarvae und gewisse Verschiedenheiten in den Geschlechtsorganen der Nematoden. Zeitschrift für wissenschaftliche Zoologie. 1859;10, 176–178.
Maupas E. Modes et formes de reproduction des nématodes. Archives de Zoologie Expérimentale et Générale. 1900;8, 463–624.
France A, Gerding M. Discovery of Phasmarhabditis hermaphrodita in Chile and its pathological differences with the UK isolate in slug control. J Nematol. 2000;32, 430.
Karimi J, Kharazi-Pakadel A, Robert SJ. Report of pathogenic nematodes from slugs, Phasmarhabditis hermaphrodita (Nematoda: Rhabditida) in Iran. Journal of Entomological Society of Iran. 2003;22, 77–78.
Genena MAM, Mostafa FAM, Fouly AH, Yousef AA. First record of the slug parasitic nematode, Phasmarhabditis hermaphrodita (Schneider) in Egypt. Archives of Phytopathology and Plant Protection. 2011;44, 340–345. 10.1080/03235400903057662 DOI
Wilson M, Burch G, Tourna M, Aalders L, Barker G. The potential of a New Zealand strain of Phasmarhabditis hermaphrodita for biological control of slugs. N Z Plant Prot. 2012;65: 161–165. 10.30843/nzpp.2012.65.5388. DOI
Glare TR O 'Callaghan M. Microbial biopesticides for control of invertebrates: Progress from New Zealand. J Invertebr Pathol. 2019;165: Pages 82–88. 10.1016/j.jip.2017.11.014 PubMed DOI
Tandingan De Ley I, McDonnell R, Lopez S, Paine TD, De Ley P. Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae), a potential biocontrol agent isolated for the first time from invasive slugs in North America. Nematology. 2014;16: 1129–38.
Mc Donnell RJ, Lutz MS, Howe DK, Denver DR. First report of the gastropod-killing nematode, Phasmarhabditis hermaphrodita, in Oregon, USA. J Nematol. 2018;50(1): 77–78. PubMed PMC
Yoder M, Tandingan De Ley I, King I, Mundo-Ocampo M, Mann J, Blaxter M, et al. DESS: A versatile solution for preserving morphology and extractable DNA of nematodes. Nematology. 2006;8: 367–376. 10.1163/156854106778493448 DOI
Williams BD, Schrank B, Huynh C, Shownkeen R, Waterston RH. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence tagged sites. Genetics. 1992;131: 15. PubMed PMC
Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, et al. A molecular evolutionary framework for the phylum Nematoda. Nature. 1998;392(6671): 71–5. 10.1038/32160 PubMed DOI
Howe DK, Denver DR. Muller’s ratchet and compensatory mutation in Caenorhabditis briggsae mitochondrial genome evolution. BMC Evol Biol. 2008;8: 62 10.1186/1471-2148-8-62 PubMed DOI PMC
Molnar RI, Bartelmes G, Dinkelacker I, Witte H, Sommer RJ. Mutation rates and intraspecific divergence of the mitochondrial genome of Pristionchus pacificus. Mol Biol Evol. 2011;28 (8): 2317–2326. 10.1093/molbev/msr057 PubMed DOI
Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR. The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics. 1992;130(3): 471–498. PubMed PMC
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7): 1870–4. 10.1093/molbev/msw054 PubMed DOI PMC
Hasegawa M, Kishino H, Yano T. Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22: 160–174. 10.1007/BF02101694 PubMed DOI
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenic trees. Bioinformatics. 2001;17: 754–755. 10.1093/bioinformatics/17.8.754 PubMed DOI
Lane DJ. 16S/23S rRNA sequencing In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. Chichester: John Wiley & Sons; 1991. pp. 115–175.
de Lillo A, Ashley FP, Palmer RM, Munson MA, Kyriacou L, Weightman AJ, et al. Novel subgingival bacterial phylotypes detected using multiple universal polymerase chain reaction primer sets. Oral Microbiol Immunol. 2006;21: 61–68. 10.1111/j.1399-302X.2005.00255.x PubMed DOI
Ross JL, Ivanova ES, Severns PM, Wilson MJ. The role of parasite release in invasion of the USA by European slugs. Biol Invasions. 2010;12: 603–610. 10.1007/s10530-009-9467-7 DOI
Grewal SK, Grewal PS, Brown I, Tan L, Hammond RB, Gaugler R. First North American survey for the recovery of nematodes associated with mollusks. J. Nematol. 2000;32: 432.
Kaya HK, Mitani DR. Molluscicidal nematodes for the biological control of pest slugs. Slosson Report. 2000;14.
Sivasundar A, Hey J. Population Genetics of Caenorhabditis elegans: The Paradox of Low Polymorphism in a Widespread Species. Genetics. 2003;163(1): 147–157. PubMed PMC
Andersen E, Gerke J, Shapiro J, Crissman JR, Ghosh R, Bloom JS, et al. Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat Genet. 2012;44: 285–290. 10.1038/ng.1050 PubMed DOI PMC
Forst S, Dowds B, Boemare N, Stackebrandt E. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol. 1997;51, 47–72. 10.1146/annurev.micro.51.1.47 PubMed DOI
Nermut’ J, Půža V, Mráček Z. The effect of different growing substrates on the development and quality of Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae). Biocontrol Science and Technology. 2014;24(9): 1026–1038.
Lewis SC, Dyal LA, Hilburn CF, Weitz S, Liau W-S, LaMunyon CW, et al. Molecular evolution in Panagrolaimus nematodes: origins of parthenogenesis, hermaphroditism and the Antarctic species P. davidi. BMC Evol Biology. 2009;9:15. PubMed PMC
Howe DK, Smith M, Tom DM, Brown AMV, Peetz AB, Zasada IA, et al. Analysis of nematode-endosymbiont coevolution in the Xiphinema americanum species complex using molecular markers of variable evolutionary rates. Nematology. 2018;21(5): 533–546. 10.1163/15685411-00003233. DOI
Nermuť J, Půža V, Mekete T, Mráček Z. Phasmarhabditis bonaquaense n. sp. (Nematoda: Rhabditidae), a new slug-parasitic nematode from the Czech Republic. Zootaxa. 2016;4179(3): 530–546. 10.11646/zootaxa.4179.3.8 PubMed DOI
Tandingan De Ley I, Holovachov O, Mc Donnell RJ, Bert W, Paine TD, De Ley P. Description of Phasmarhabditis californica n. sp. and first report of P. papillosa (Nematoda: Rhabditidae) from invasive slugs in the USA. Nematology. 2016;18(2): 175–193.
Nermuť J, Půža V, Mráček Z. Phasmarhabditis apuliae n. sp. (Nematoda: Rhabditidae), a new rhabditid nematode from milacid slugs. Nematology. 2016;18(9): 1095–1112. 10.1163/15685411-00003017. DOI
Huang RE, Ye W, Ren X, Zhao Z. Morphological and molecular characterization of Phasmarhabditis huizhouensis sp. nov. (Nematoda: Rhabditidae), a new rhabditid nematode from South China. PLOS ONE. 2015;10(12): e0144386 10.1371/journal.pone.0144386 PubMed DOI PMC
Ross JL, Ivanova ES, Spiridonov SE, Waeyenberge L, Moens M, Nicol GW, et al. Molecular phylogeny of slug-parasitic nematodes inferred from 18S rRNA gene sequences. Mol Phylogenet Evol. 2010;55(2): 738–743. 10.1016/j.ympev.2010.01.026 PubMed DOI
Pieterse A, Tiedt LR, Malan AP, Ross JL. First record of Phasmarhabditis papillosa (Nematoda: Rhabditidae) in South Africa, and its virulence against the invasive slug, Deroceras panormitanum. Nematology. 2017;19(9): 1035–1050. 10.1163/15685411-00003105. DOI
Ross JL, Pieterse A, Malan AP, Ivanova E. Phasmarhabditis safricana n. sp. (Nematoda: Rhabditidae), a parasite of the slug Deroceras reticulatum from South Africa. Zootaxa. 2018;4420(3): 391–404. 10.11646/zootaxa.4420.3.5 PubMed DOI
Kiontke K, Barriere A, Kolotuev I, Podbilewicz B, Sommer R, Fitch DHA, et al. Trends, stasis, and drift in the evolution of nematode vulva development. Curr Biol. 2007;17(22): 1925–1937. 10.1016/j.cub.2007.10.061 PubMed DOI