Splicing Enhancers at Intron-Exon Borders Participate in Acceptor Splice Sites Recognition
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NU20-02-00261
Ministerstvo Zdravotnictví Ceské Republiky
201904
Centre for Cardiovascular Surgery and Transplantation
MUNI/A/1099/2019
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32911621
PubMed Central
PMC7554774
DOI
10.3390/ijms21186553
PII: ijms21186553
Knihovny.cz E-resources
- Keywords
- SRSF1, U2AF35, acceptor splice site recognition, pre-mRNA splicing, splicing enhancer,
- MeSH
- Alternative Splicing genetics MeSH
- Exons genetics MeSH
- HeLa Cells MeSH
- Introns genetics MeSH
- Humans MeSH
- RNA Splice Sites genetics physiology MeSH
- RNA-Binding Proteins metabolism MeSH
- Regulatory Sequences, Nucleic Acid genetics MeSH
- Base Sequence genetics MeSH
- Serine-Arginine Splicing Factors metabolism MeSH
- RNA Splicing physiology MeSH
- RNA Splicing Factors metabolism physiology MeSH
- Splicing Factor U2AF metabolism MeSH
- Spliceosomes metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA Splice Sites MeSH
- RNA-Binding Proteins MeSH
- Serine-Arginine Splicing Factors MeSH
- RNA Splicing Factors MeSH
- Splicing Factor U2AF MeSH
- SRSF1 protein, human MeSH Browser
- U2AF1 protein, human MeSH Browser
Acceptor splice site recognition (3' splice site: 3'ss) is a fundamental step in precursor messenger RNA (pre-mRNA) splicing. Generally, the U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF) heterodimer recognizes the 3'ss, of which U2AF35 has a dual function: (i) It binds to the intron-exon border of some 3'ss and (ii) mediates enhancer-binding splicing activators' interactions with the spliceosome. Alternative mechanisms for 3'ss recognition have been suggested, yet they are still not thoroughly understood. Here, we analyzed 3'ss recognition where the intron-exon border is bound by a ubiquitous splicing regulator SRSF1. Using the minigene analysis of two model exons and their mutants, BRCA2 exon 12 and VARS2 exon 17, we showed that the exon inclusion correlated much better with the predicted SRSF1 affinity than 3'ss quality, which were assessed using the Catalog of Inferred Sequence Binding Preferences of RNA binding proteins (CISBP-RNA) database and maximum entropy algorithm (MaxEnt) predictor and the U2AF35 consensus matrix, respectively. RNA affinity purification proved SRSF1 binding to the model 3'ss. On the other hand, knockdown experiments revealed that U2AF35 also plays a role in these exons' inclusion. Most probably, both factors stochastically bind the 3'ss, supporting exon recognition, more apparently in VARS2 exon 17. Identifying splicing activators as 3'ss recognition factors is crucial for both a basic understanding of splicing regulation and human genetic diagnostics when assessing variants' effects on splicing.
See more in PubMed
Newman A. RNA splicing. Curr. Biol. 1998;8:R903–R905. doi: 10.1016/S0960-9822(98)00005-0. PubMed DOI
Burge C.B., Tuschl T., Sharp P.A. 20 Splicing of Precursors to mRNAs by the Spliceosomes. Cold Spring Harb. Monogr. Arch. 1999;37:525–560. doi: 10.1101/0.525-560. DOI
Zhang C., Li W.-H., Krainer A.R., Zhang M.Q. RNA landscape of evolution for optimal exon and intron discrimination. Proc. Natl. Acad. Sci. USA. 2008;105:5797–5802. doi: 10.1073/pnas.0801692105. PubMed DOI PMC
Dreyfuss G., Kim V.N., Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 2002;3:195–205. doi: 10.1038/nrm760. PubMed DOI
Long J.C., Caceres J.F. The SR protein family of splicing factors: Master regulators of gene expression. Biochem. J. 2009;417:15–27. doi: 10.1042/BJ20081501. PubMed DOI
Graveley B.R. Sorting out the complexity of SR protein functions. RNA. 2000;6:1197–1211. doi: 10.1017/S1355838200000960. PubMed DOI PMC
Wu S., Romfo C.M., Nilsen T.W., Green M.R. Functional recognition of the 3′ splice site AG by the splicing factor U2AF 35. Nature. 1999;402:832–835. doi: 10.1038/45590. PubMed DOI
Will C.L., Lührmann R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 2011;3 doi: 10.1101/cshperspect.a003707. PubMed DOI PMC
Wu J.Y., Maniatis T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell. 1993;75:1061–1070. doi: 10.1016/0092-8674(93)90316-I. PubMed DOI
Zuo P., Maniatis T. The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing. Genes Dev. 1996;10:1356–1368. doi: 10.1101/gad.10.11.1356. PubMed DOI
Manley J.L., Krainer A.R. A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins) Genes Dev. 2010;24:1073–1074. doi: 10.1101/gad.1934910. PubMed DOI PMC
Jeong S. SR Proteins: Binders, Regulators, and Connectors of RNA. Mol. Cells. 2017;40:1–9. doi: 10.14348/molcells.2017.2319. PubMed DOI PMC
Kanopka A., Mühlemann O., Akusjärvi G. Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature. 1996;381:535–538. doi: 10.1038/381535a0. PubMed DOI
Shin C., Feng Y., Manley J.L. Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature. 2004;427:553–558. doi: 10.1038/nature02288. PubMed DOI
Das S., Krainer A.R. Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer. Mol. Cancer Res. MCR. 2014;12:1195–1204. doi: 10.1158/1541-7786.MCR-14-0131. PubMed DOI PMC
Gonçalves V., Jordan P. Posttranscriptional Regulation of Splicing Factor SRSF1 and Its Role in Cancer Cell Biology. BioMed Res. Int. 2015;2015:287048. doi: 10.1155/2015/287048. PubMed DOI PMC
Pandit S., Zhou Y., Shiue L., Coutinho-Mansfield G., Li H., Qiu J., Huang J., Yeo G.W., Ares M., Fu X.-D. Genome-wide Analysis Reveals SR Protein Cooperation and Competition in Regulated Splicing. Mol. Cell. 2013;50:223–235. doi: 10.1016/j.molcel.2013.03.001. PubMed DOI PMC
Krainer A.R., Conway G.C., Kozak D. The essential pre-mRNA splicing factor SF2 influences 5′ splice site selection by activating proximal sites. Cell. 1990;62:35–42. doi: 10.1016/0092-8674(90)90237-9. PubMed DOI
Sanford J.R., Wang X., Mort M., Vanduyn N., Cooper D.N., Mooney S.D., Edenberg H.J., Liu Y. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res. 2009;19:381–394. doi: 10.1101/gr.082503.108. PubMed DOI PMC
Graveley B.R., Hertel K.J., Maniatis T. The role of U2AF35 and U2AF65 in enhancer-dependent splicing. RNA. 2001;7:806–818. doi: 10.1017/S1355838201010317. PubMed DOI PMC
Kralovicova J., Knut M., Cross N.C.P., Vorechovsky I. Identification of U2AF(35)-dependent exons by RNA-Seq reveals a link between 3′ splice-site organization and activity of U2AF-related proteins. Nucleic Acids Res. 2015;43:3747–3763. doi: 10.1093/nar/gkv194. PubMed DOI PMC
Fu Y., Masuda A., Ito M., Shinmi J., Ohno K. AG-dependent 3′-splice sites are predisposed to aberrant splicing due to a mutation at the first nucleotide of an exon. Nucleic Acids Res. 2011;39:4396–4404. doi: 10.1093/nar/gkr026. PubMed DOI PMC
Grodecká L., Lockerová P., Ravčuková B., Buratti E., Baralle F.E., Dušek L., Freiberger T. Exon First Nucleotide Mutations in Splicing: Evaluation of In Silico Prediction Tools. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0089570. PubMed DOI PMC
Mollet I., Barbosa-Morais N.L., Andrade J., Carmo-Fonseca M. Diversity of human U2AF splicing factors. FEBS J. 2006;273:4807–4816. doi: 10.1111/j.1742-4658.2006.05502.x. PubMed DOI
Shao C., Yang B., Wu T., Huang J., Tang P., Zhou Y., Zhou J., Qiu J., Jiang L., Li H., et al. Mechanisms for U2AF to define 3′ splice sites and regulate alternative splicing in the human genome. Nat. Struct. Mol. Biol. 2014;21:997–1005. doi: 10.1038/nsmb.2906. PubMed DOI PMC
Sohail M., Xie J. Diverse regulation of 3′ splice site usage. Cell. Mol. Life Sci. 2015;72:4771–4793. doi: 10.1007/s00018-015-2037-5. PubMed DOI PMC
Wu T., Fu X.-D. Genomic functions of U2AF in constitutive and regulated splicing. RNA Biol. 2015;12:479–485. doi: 10.1080/15476286.2015.1020272. PubMed DOI PMC
Shariat N., Holladay C., Cleary R., Patton J., III Isolated growth hormone deficiency type II caused by a point mutation that alters both splice site strength and splicing enhancer function. Clin. Genet. 2008;74:539–545. doi: 10.1111/j.1399-0004.2008.01042.x. PubMed DOI PMC
Rooke N., Markovtsov V., Cagavi E., Black D.L. Roles for SR Proteins and hnRNP A1 in the Regulation of c-src Exon N1. Mol. Cell. Biol. 2003;23:1874–1884. doi: 10.1128/MCB.23.6.1874-1884.2003. PubMed DOI PMC
Wang X., Juan L., Lv J., Wang K., Sanford J.R., Liu Y. Predicting sequence and structural specificities of RNA binding regions recognized by splicing factor SRSF1. BMC Genom. 2011;12:S8. doi: 10.1186/1471-2164-12-S5-S8. PubMed DOI PMC
Ray D., Kazan H., Cook K.B., Weirauch M.T., Najafabadi H.S., Li X., Gueroussov S., Albu M., Zheng H., Yang A., et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature. 2013;499:172–177. doi: 10.1038/nature12311. PubMed DOI PMC
Tournier I., Vezain M., Martins A., Charbonnier F., Baert-Desurmont S., Olschwang S., Wang Q., Buisine M.P., Soret J., Tazi J., et al. A large fraction of unclassified variants of the mismatch repair genes MLH1 and MSH2 is associated with splicing defects. Hum. Mutat. 2008;29:1412–1424. doi: 10.1002/humu.20796. PubMed DOI
Gaildrat P., Krieger S., Théry J.-C., Killian A., Rousselin A., Berthet P., Frébourg T., Hardouin A., Martins A., Tosi M. The BRCA1 c.5434C→G (p.Pro1812Ala) variant induces a deleterious exon 23 skipping by affecting exonic splicing regulatory elements. J. Med. Genet. 2010;47:398–403. doi: 10.1136/jmg.2009.074047. PubMed DOI
Ke S., Shang S., Kalachikov S.M., Morozova I., Yu L., Russo J.J., Ju J., Chasin L.A. Quantitative evaluation of all hexamers as exonic splicing elements. Genome Res. 2011;21:1360–1374. doi: 10.1101/gr.119628.110. PubMed DOI PMC
Piva F., Giulietti M., Burini A.B., Principato G. SpliceAid 2: A database of human splicing factors expression data and RNA target motifs. Hum. Mutat. 2012;33:81–85. doi: 10.1002/humu.21609. PubMed DOI
Yeo G., Burge C.B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. J. Comput. Mol. Cell Biol. 2004;11:377–394. doi: 10.1089/1066527041410418. PubMed DOI
Doktor T.K., Schroeder L.D., Vested A., Palmfeldt J., Andersen H.S., Gregersen N., Andresen B.S. SMN2 exon 7 splicing is inhibited by binding of hnRNP A1 to a common ESS motif that spans the 3′ splice site. Hum. Mutat. 2011;32:220–230. doi: 10.1002/humu.21419. PubMed DOI
Saltzman A.L., Pan Q., Blencowe B.J. Regulation of alternative splicing by the core spliceosomal machinery. Genes Dev. 2011;25:373–384. doi: 10.1101/gad.2004811. PubMed DOI PMC
Huang X., Zheng M., Wang P., Mok B.W.-Y., Liu S., Lau S.-Y., Chen P., Liu Y.-C., Liu H., Chen Y., et al. An NS-segment exonic splicing enhancer regulates influenza A virus replication in mammalian cells. Nat. Commun. 2017;8:14751. doi: 10.1038/ncomms14751. PubMed DOI PMC
Ilagan J.O., Ramakrishnan A., Hayes B., Murphy M.E., Zebari A.S., Bradley P., Bradley R.K. U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 2015;25:14–26. doi: 10.1101/gr.181016.114. PubMed DOI PMC
Moseley C.T., Mullis P.E., Prince M.A., Phillips J.A. An exon splice enhancer mutation causes autosomal dominant GH deficiency. J. Clin. Endocrinol. Metab. 2002;87:847–852. doi: 10.1210/jcem.87.2.8236. PubMed DOI
McVety S., Li L., Gordon P.H., Chong G., Foulkes W.D. Disruption of an exon splicing enhancer in exon 3 of MLH1 is the cause of HNPCC in a Quebec family. J. Med. Genet. 2006;43:153–156. doi: 10.1136/jmg.2005.031997. PubMed DOI PMC
Julien P., Miñana B., Baeza-Centurion P., Valcárcel J., Lehner B. The complete local genotype–phenotype landscape for the alternative splicing of a human exon. Nat. Commun. 2016;7:11558. doi: 10.1038/ncomms11558. PubMed DOI PMC
Ke S., Anquetil V., Zamalloa J.R., Maity A., Yang A., Arias M.A., Kalachikov S., Russo J.J., Ju J., Chasin L.A. Saturation mutagenesis reveals manifold determinants of exon definition. Genome Res. 2018;28:11–24. doi: 10.1101/gr.219683.116. PubMed DOI PMC
Singh R.N., Singh N.N. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes. Adv. Neurobiol. 2018;20:31–61. doi: 10.1007/978-3-319-89689-2_2. PubMed DOI PMC
Dauksaite V., Akusjärvi G. Human splicing factor ASF/SF2 encodes for a repressor domain required for its inhibitory activity on pre-mRNA splicing. J. Biol. Chem. 2002;277:12579–12586. doi: 10.1074/jbc.M107867200. PubMed DOI
Han J., Ding J.-H., Byeon C.W., Kim J.H., Hertel K.J., Jeong S., Fu X.-D. SR proteins induce alternative exon skipping through their activities on the flanking constitutive exons. Mol. Cell. Biol. 2011;31:793–802. doi: 10.1128/MCB.01117-10. PubMed DOI PMC
Rual J.-F., Venkatesan K., Hao T., Hirozane-Kishikawa T., Dricot A., Li N., Berriz G.F., Gibbons F.D., Dreze M., Ayivi-Guedehoussou N., et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437:1173–1178. doi: 10.1038/nature04209. PubMed DOI
Huttlin E.L., Bruckner R.J., Paulo J.A., Cannon J.R., Ting L., Baltier K., Colby G., Gebreab F., Gygi M.P., Parzen H., et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545:505–509. doi: 10.1038/nature22366. PubMed DOI PMC
Goren A., Kim E., Amit M., Vaknin K., Kfir N., Ram O., Ast G. Overlapping splicing regulatory motifs—combinatorial effects on splicing. Nucleic Acids Res. 2010;38:3318–3327. doi: 10.1093/nar/gkq005. PubMed DOI PMC
Benoit Bouvrette L.P., Bovaird S., Blanchette M., Lécuyer E. oRNAment: A database of putative RNA binding protein target sites in the transcriptomes of model species. Nucleic Acids Res. 2020;48:D166–D173. doi: 10.1093/nar/gkz986. PubMed DOI PMC
Cléry A., Jayne S., Benderska N., Dominguez C., Stamm S., Allain F.H.-T. Molecular basis of purine-rich RNA recognition by the human SR-like protein Tra2-β1. Nat. Struct. Mol. Biol. 2011;18:443–450. doi: 10.1038/nsmb.2001. PubMed DOI
Desmet F.-O., Hamroun D., Lalande M., Collod-Béroud G., Claustres M., Béroud C. Human Splicing Finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67. doi: 10.1093/nar/gkp215. PubMed DOI PMC
Cerasuolo A., Buonaguro L., Buonaguro F.M., Tornesello M.L. The Role of RNA Splicing Factors in Cancer: Regulation of Viral and Human Gene Expression in Human Papillomavirus-Related Cervical Cancer. Front. Cell Dev. Biol. 2020;8 doi: 10.3389/fcell.2020.00474. PubMed DOI PMC
Anczuków O., Akerman M., Cléry A., Wu J., Shen C., Shirole N.H., Raimer A., Sun S., Jensen M.A., Hua Y., et al. SRSF1-Regulated Alternative Splicing in Breast Cancer. Mol. Cell. 2015;60:105–117. doi: 10.1016/j.molcel.2015.09.005. PubMed DOI PMC
Brooks A.N., Choi P.S., de Waal L., Sharifnia T., Imielinski M., Saksena G., Pedamallu C.S., Sivachenko A., Rosenberg M., Chmielecki J., et al. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS ONE. 2014;9:e87361. doi: 10.1371/journal.pone.0087361. PubMed DOI PMC
Hernández-Imaz E., Martín Y., de Conti L., Melean G., Valero A., Baralle M., Hernández-Chico C. Functional Analysis of Mutations in Exon 9 of NF1 Reveals the Presence of Several Elements Regulating Splicing. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0141735. PubMed DOI PMC
Pacheco T.R., Moita L.F., Gomes A.Q., Hacohen N., Carmo-Fonseca M. RNA interference knockdown of hU2AF35 impairs cell cycle progression and modulates alternative splicing of Cdc25 transcripts. Mol. Biol. Cell. 2006;17:4187–4199. doi: 10.1091/mbc.e06-01-0036. PubMed DOI PMC
Rahman M.A., Azuma Y., Nasrin F., Takeda J., Nazim M., Ahsan K.B., Masuda A., Engel A.G., Ohno K. SRSF1 and hnRNP H antagonistically regulate splicing of COLQ exon 16 in a congenital myasthenic syndrome. Sci. Rep. 2015;5:13208. doi: 10.1038/srep13208. PubMed DOI PMC
Jobbins A.M., Reichenbach L.F., Lucas C.M., Hudson A.J., Burley G.A., Eperon I.C. The mechanisms of a mammalian splicing enhancer. Nucleic Acids Res. 2018;46:2145–2158. doi: 10.1093/nar/gky056. PubMed DOI PMC
Erkelenz S., Theiss S., Otte M., Widera M., Peter J.O., Schaal H. Genomic HEXploring allows landscaping of novel potential splicing regulatory elements. Nucleic Acids Res. 2014;42:10681–10697. doi: 10.1093/nar/gku736. PubMed DOI PMC
Spena S., Tenchini M.L., Buratti E. Cryptic splice site usage in exon 7 of the human fibrinogen Bβ-chain gene is regulated by a naturally silent SF2/ASF binding site within this exon. RNA. 2006;12:948–958. doi: 10.1261/rna.2269306. PubMed DOI PMC