Orientation-selective and directional deep brain stimulation in swine assessed by functional MRI at 3T
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
P41 EB027061
NIBIB NIH HHS - United States
P50 NS098573
NINDS NIH HHS - United States
P41 EB015894
NIBIB NIH HHS - United States
R01 NS094206
NINDS NIH HHS - United States
P30 NS076408
NINDS NIH HHS - United States
U01 NS103569
NINDS NIH HHS - United States
U54 MH091657
NIMH NIH HHS - United States
R25 NS118756
NINDS NIH HHS - United States
R01 NS081118
NINDS NIH HHS - United States
PubMed
32916285
PubMed Central
PMC7783780
DOI
10.1016/j.neuroimage.2020.117357
PII: S1053-8119(20)30843-0
Knihovny.cz E-zdroje
- Klíčová slova
- Directional DBS, Functional magnetic resonance imaging, High frequency stimulation, Motor cortex, Orientation selective DBS, Somatosensory cortex, Thalamus,
- MeSH
- elektrická stimulace metody MeSH
- hluboká mozková stimulace * metody MeSH
- magnetická rezonanční tomografie metody MeSH
- motorické korové centrum fyziologie MeSH
- nervové dráhy fyziologie MeSH
- nuclei ventrales thalami fyziologie MeSH
- nucleus subthalamicus fyziologie MeSH
- prasata MeSH
- thalamus fyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Functional MRI (fMRI) has become an important tool for probing network-level effects of deep brain stimulation (DBS). Previous DBS-fMRI studies have shown that electrical stimulation of the ventrolateral (VL) thalamus can modulate sensorimotor cortices in a frequency and amplitude dependent manner. Here, we investigated, using a swine animal model, how the direction and orientation of the electric field, induced by VL-thalamus DBS, affects activity in the sensorimotor cortex. Adult swine underwent implantation of a novel 16-electrode (4 rows x 4 columns) directional DBS lead in the VL thalamus. A within-subject design was used to compare fMRI responses for (1) directional stimulation consisting of monopolar stimulation in four radial directions around the DBS lead, and (2) orientation-selective stimulation where an electric field dipole was rotated 0°-360° around a quadrangle of electrodes. Functional responses were quantified in the premotor, primary motor, and somatosensory cortices. High frequency electrical stimulation through leads implanted in the VL thalamus induced directional tuning in cortical response patterns to varying degrees depending on DBS lead position. Orientation-selective stimulation showed maximal functional response when the electric field was oriented approximately parallel to the DBS lead, which is consistent with known axonal orientations of the cortico-thalamocortical pathway. These results demonstrate that directional and orientation-selective stimulation paradigms in the VL thalamus can tune network-level modulation patterns in the sensorimotor cortex, which may have translational utility in improving functional outcomes of DBS therapy.
Department of Biomedical Engineering University of Minnesota
Department of Radiology Center for Magnetic Resonance Research University of Minnesota
Zobrazit více v PubMed
Anderson DN, Duffley G, Vorwerk J, Dorval AD, Butson CR, 2019. Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation. J Neural Eng 16 (1), 016026. doi: 10.1088/1741-2552/aae590. PubMed DOI PMC
Asanuma C, Thach T, Jones EG, 1983. Distribution of cerebellar terminations in the ventral lateral thalamic region of the monkey. Brain ResRev 5, 237–265. PubMed
Barbe MT, Maarouf M, Alesch F, Timmermann L, 2014. Multiple source current steering–a novel deep brain stimulation concept for customized programming in a Parkinson’s disease patient. Parkinsonism Relat. Disord 20 (4), 471–473. doi: 10.1016/j.parkreldis.2013.07.021. PubMed DOI
Benabid AL, Pollak P, Hoffmann D, et al., 1991. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. The Lancet 337 (8738), 403–406. doi: 10.1016/0140-6736(91)91175-T. PubMed DOI
Bergin CJ, Pauly JM, Macovski A, 1991. Lung Parenchyma: projection Reconstruction MR Imaging. Radiology 777–781 Published online. PubMed
Butson CR, McIntyre CC, 2008. Current steering to control the volume of tissue activated during deep brain stimulation. Brain Stimul 1 (1), 7–15. doi: 10.1016/j.brs.2007.08.004. PubMed DOI PMC
Carmichael DW, Pinto S, Limousin-Dowsey P, et al., 2007. Functional MRI with active, fully implanted, deep brain stimulation systems: safety and experimental confounds. Neuroimage 37 (2), 508–517. doi: 10.1016/j.neuroimage.2007.04.058. PubMed DOI
Ceballos-Baumann AO, Boecker H, Fogel W, et al., 2001. Thalamic stimulation for essential tremor activates motor and deactivates vestibular cortex. Neurology 56 (10), 1347–1354. PubMed
Chaturvedi A, Luján JL, McIntyre CC, 2013. Artificial neural network based characterization of the volume of tissue activated during deep brain stimulation. J Neural Eng 10 (5), 056023. doi: 10.1088/1741-2560/10/5/056023. PubMed DOI PMC
Connolly AT, Vetter RJ, Hetke JF, et al., 2016. A Novel Lead Design for Modulation and Sensing of Deep Brain Structures. IEEE Transactions on Biomedical Engineering 63 (1), 148–157. doi: 10.1109/TBME.2015.2492921. PubMed DOI PMC
Contarino MF, Bour LJ, Verhagen R, et al., 2014. Directional steering: a novel approach to deep brain stimulation. Neurology 83 (13), 1163–1169. doi: 10.1212/WNL.0000000000000823. PubMed DOI
Dembek TA, Reker P, Visser-Vandewalle V, et al., 2017. Directional DBS increases side-effect thresholds-A prospective, double-blind trial: directional Dbs Increases Side-Effect Thresholds. Movement Disorders 32 (10), 1380–1388. doi: 10.1002/mds.27093. PubMed DOI
Edwards CA, Rusheen AE, Oh Y, et al., 2018. A novel re-attachable stereotactic frame for MRI-guided neuronavigation and its validation in a large animal and human cadaver model. J Neural Eng 15 (6), 066003. doi: 10.1088/1741-2552/aadb49. PubMed DOI PMC
Fang P−C, Stepniewska I, Kaas JH, 2006. The thalamic connections of motor, premotor, and prefrontal areas of cortex in a prosimian primate (Otolemur garnetti). Neuroscience 143 (4), 987–1020. doi: 10.1016/j.neuroscience.2006.08.053. PubMed DOI PMC
Fedorov A, Beichel R, Kalpathy-Cramer J, et al., 2012. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30 (9), 1323–1341. doi: 10.1016/j.mri.2012.05.001. PubMed DOI PMC
Félix B, Léger M−E, Albe-Fessard D, et al., 1999. Stereotaxic atlas of the pig brain. Brain Res. Bull 49 (1), 1–137. PubMed
Fytagoridis A, Sjöberg R, Åström M, Fredricks A, 2013. Effects of deep brain stimulation in the caudal Zona incerta on verbal fluency. S Karger 91 (1), 24–29. doi: 10.1159/000342497. PubMed DOI
Gibson WS, Jo HJ, Testini P, et al., 2016. Functional correlates of the therapeutic and adverse effects evoked by thalamic stimulation for essential tremor. Brain 139 (8), 2198–2210. doi: 10.1093/brain/aww145. PubMed DOI PMC
Gorny KR, Presti MF, Goerss SJ, et al., 2013. Measurements of RF heating during 3.0-T MRI of a pig implanted with deep brain stimulator. Magn Reson Imaging 31 (5), 783–788. doi: 10.1016/j.mri.2012.11.005. PubMed DOI PMC
Guillery RW, 1995. Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. Journal of Anantomy 187, 583–592. PubMed PMC
Hamel W, Herzog J, Kopper F, et al., 2007. Deep brain stimulation in the subthalamic area is more effective than nucleus ventralis intermedius stimulation for bilateral intention tremor. Acta Neurochir (Wien) 149 (8), 749–758. doi: 10.1007/s00701-007-1230-1. PubMed DOI
Hartmann CJ, Hirschmann J, Vesper J, Wojtecki L, Butz M, Schnitzler A, 2018. Distinct cortical responses evoked by electrical stimulation of the thalamic ventral intermediate nucleus and of the subthalamic nucleus. NeuroImage: Clinical 20, 1246–1254. doi: 10.1016/j.nicl.2018.11.001. PubMed DOI PMC
Haslinger B, Boecker H, Büchel C, et al., 2003. Differential modulation of subcortical target and cortex during deep brain stimulation. Neuroimage 18 (2), 517–524. doi: 10.1016/S1053-8119(02)00043-5. PubMed DOI
Hofman MA.., 1985. Size and Shape of the Cerebral Cortex in Mammals. I. The Cortical Surface. Brain, Behavior & Evolution 27, 28–34. PubMed
Hua SE, Lenz FA, Zirh TA, Reich SG, Dougherty PM, 1998. Thalamic neuronal activity correlated with essential tremor. Journal of Neurology, Neurosurgery & Psychiatry 64 (2), 273–276. PubMed PMC
Hubble J, Busenbark K, Wilkinson S, Penn R, Lyons K, Koller W, 1996. Deep brain stimulation for essential tremor. Neurology 46, 1150–1153. PubMed
Ilinsky I, Kultas-Ilinsky K, 1987. Sagittal cytoarchitectonic maps of the macaca mulatta thalamus with a revised nomenclature of the motor-related nuclei validated by observations on their connectivity. JCompNeurol 262, 331–364. PubMed
Ilinsky IA, Kultas-Ilinsky K, 2002. Motor thalamic circuits in primates with emphasis on the area targeted in treatment of movement disorders. Movement Disorders 17 (S3), S9–S14. doi: 10.1002/mds.10137. PubMed DOI
Kakei S, Na J, Shinoda Y, 2001. Thalamic terminal morphology and distribution of single corticothalamic axons originating from layers 5 and 6 of the cat motor cortex. J. Comp. Neurol 437 (2), 170–185. doi: 10.1002/cne.1277. PubMed DOI
Keane M, Deyo S, Abosch A, Bajwa JA, Johnson MD, 2012. Improved spatial targeting with directionally segmented deep brain stimulation leads for treating essential tremor. J Neural Eng 9 (4), 046005. doi: 10.1088/1741-2560/9/4/046005. PubMed DOI PMC
Kim JP, Min H−K, Knight EJ, et al., 2013. Centromedian-Parafascicular Deep Brain Stimulation Induces Differential Functional Inhibition of the Motor, Associative, and Limbic Circuits in Large Animals. Biol. Psychiatry 74 (12), 917–926. doi: 10.1016/j.biopsych.2013.06.024. PubMed DOI PMC
Kultas-Ilinsky K, Sivan-Loukianova E, Ilinsky IA, 2003. Reevaluation of the primary motor cortex connections with the thalamus in primates. J. Comp. Neurol 457 (2), 133–158. doi: 10.1002/cne.10539. PubMed DOI
Kuncel AM, Cooper SE, Wolgamuth BR, et al., 2006. Clinical response to varying the stimulus parameters in deep brain stimulation for essential tremor. Movement Disorders 21 (11), 1920–1928. doi: 10.1002/mds.21087. PubMed DOI
Lee J, Jo HJ, Kim I, et al., 2019. Mapping BOLD activation by pharmacologically evoked tremor in swine. Front Neurosci 13, 985. PubMed PMC
Lee KH, Chang S-Y, Jang D-P, et al., 2011. Emerging techniques for elucidating mechanism of action of deep brain stimulation. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 677–680. doi: 10.1109/IEMBS.2011.6090152. PubMed DOI PMC
Lehto LJ, Slopsema JP, Johnson MD, et al., 2017. Orientation selective deep brain stimulation. J Neural Eng 14 (1), 016016. doi: 10.1088/1741-2552/aa5238. PubMed DOI PMC
LeVan P, Gotman J, 2009. Independent component analysis as a model-free approach for the detection of BOLD changes related to epileptic spikes: a simulation study. Hum Brain Mapp 30 (7), 2021–2031. doi: 10.1002/hbm.20647. PubMed DOI PMC
Lozano AM, 2000. Vim thalamic stimulation for tremor. Arch. Med. Res 31 (3), 266–269. PubMed
Martens HC, Toader E, Decre MM, et al., 2011. Spatial steering of deep brain stimulation volumes using a novel lead design. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 122 (3), 558–566. doi: 10.1016/j.clinph.2010.07.026. PubMed DOI
Mason A, Ilinsky IA, Beck S, Kultas-Ilinsky K, 1996. Reevaluation of synaptic relationships of cerebellar terminals in the ventral lateral nucleus of the rhesus monkey thalamus based on serial section analysis and three-dimensional reconstruction. Exp Brain Res 109 (2). doi: 10.1007/BF00231783. PubMed DOI
McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL, 2004. Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115 (3), 589–595. doi: 10.1016/j.clinph.2003.10.033. PubMed DOI
Min H−K, Hwang S−C, Marsh MP, et al., 2012. Deep brain stimulation induces BOLD activation in motor and non-motor networks: an fMRI comparison study of STN and EN/GPi DBS in large animals. Neuroimage 63 (3), 1408–1420. doi: 10.1016/j.neuroimage.2012.08.006. PubMed DOI PMC
Moeller J, Strother S, Siditis J, Rottenberg D, 1987. The scaled subprofile model: a statistical approach to the analysis of functional patterns in positron emission tomographic data. J Cereb Blood Flow Metab 7, 649–658. PubMed
Moffitt MA, McIntyre CC, 2005. Model-based analysis of cortical recording with silicon microelectrodes. Clinical Neurophysiology 116 (9), 2240–2250. doi: 10.1016/j.clinph.2005.05.018. PubMed DOI
Paek SB, Min H−K, Kim I, et al., 2015a. Frequency-dependent functional neuromodulatory effects on the motor network by ventral lateral thalamic deep brain stimulation in swine. Neuroimage 105, 181–188. doi: 10.1016/j.neuroimage.2014.09.064. PubMed DOI PMC
Paek SB, Min H−K, Kim I, et al., 2015b. Frequency-dependent functional neuromodulatory effects on the motor network by ventral lateral thalamic deep brain stimulation in swine. Neuroimage 105, 181–188. doi: 10.1016/j.neuroimage.2014.09.064. PubMed DOI PMC
Papavassiliou E, Rau G, Heath S, et al., 2004. Thalamic Deep Brain Stimulation for Essential Tremor: relation of Lead Location to Outcome. Neurosurgery 54 (5), 1120–1130. doi: 10.1227/01.NEU.0000119329.66931.9E. PubMed DOI
Peña E, Zhang S, Deyo S, Xiao Y, Johnson MD, 2017. Particle swarm optimization for programming deep brain stimulation arrays. J Neural Eng 14 (1), 016014. doi: 10.1088/1741-2552/aa52d1. PubMed DOI PMC
Peña E, Zhang S, Patriat R, et al., 2018. Multi-objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways. J Neural Eng 15 (6), 066020. doi: 10.1088/1741-2552/aae12f. PubMed DOI PMC
Pollo C, Kaelin-Lang A, Oertel MF, et al., 2014. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain : a journal of neurology 137 (Pt 7), 2015–2026. doi: 10.1093/brain/awu102. PubMed DOI
Pouratian N, Reames DL, Frysinger R, Elias WJ, 2011. Comprehensive analysis of risk factors for seizures after deep brain stimulation surgery. Clinical article. J. Neurosurg 115 (2), 310–315. doi: 10.3171/2011.4.JNS102075. PubMed DOI
Rebelo P, Green AL, Aziz TZ, et al., 2018. Thalamic Directional Deep Brain Stimulation for tremor: spend less, get more. Brain Stimul 11 (3), 600–606. doi: 10.1016/j.brs.2017.12.015. PubMed DOI
Reker P, Dembek TA, Becker J, Visser-Vandewalle V, Timmermann L, 2016. Directional deep brain stimulation: a case of avoiding dysarthria with bipolar directional current steering. Parkinsonism Relat. Disord 31, 156–158. doi: 10.1016/j.parkreldis.2016.08.007. PubMed DOI
Richardson RM, Ostrem JL, Starr PA, 2009. Surgical Repositioning of Misplaced Subthalamic Electrodes in Parkinson’s Disease: location of Effective and Ineffective Leads. Stereotact Funct Neurosurg 87 (5), 297–303. doi: 10.1159/000230692. PubMed DOI
Ross EK, Kim JP, Settell ML, et al., 2016. Fornix deep brain stimulation circuit effect is dependent on major excitatory transmission via the nucleus accumbens. Neuroimage 128, 138–148. doi: 10.1016/j.neuroimage.2015.12.056. PubMed DOI PMC
Saikali S, Meurice P, Sauleau P, et al., 2010. A three-dimensional digital segmented and deformable brain atlas of the domestic pig. J. Neurosci. Methods 192 (1), 102–109. doi: 10.1016/j.jneumeth.2010.07.041. PubMed DOI
Sandvik U, Hariz G−M, Blomstedt P, 2012. Quality of life following DBS in the caudal zona incerta in patients with essential tremor. Acta Neurochir (Wien) 154 (3), 495–499. doi: 10.1007/s00701-011-1230-z. PubMed DOI
Schmidt C, van Rienen U, 2012. Modeling the Field Distribution in Deep Brain Stimulation: the Influence of Anisotropy of Brain Tissue. IEEE Transactions on Biomedical Engineering 59 (6), 1583–1592. doi: 10.1109/TBME.2012.2189885. PubMed DOI
Slopsema JP, Cass R, Hjelle M, Johnson MD, 2019. Advancing Directional Deep Brain Stimulation Array Technology. In: Proceedings of the 2019 Design of Medical Devices Conference 2019 Design of Medical Devices Conference Published online April.
Slopsema JP, Peña E, Patriat R, et al., 2018. Clinical deep brain stimulation strategies for orientation-selective pathway activation. J Neural Eng 15 (5), 056029. doi: 10.1088/1741-2552/aad978. PubMed DOI PMC
Springer, 2011. Molecular and Functional Models in Neuropsychiatry. Accessed September 10, 2019 http://public.eblib.com/choice/publicfullrecord.aspx?p=763654.
Steigerwald F, Müller L, Johannes S, Matthies C, Volkmann J, 2016. Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device. Movement Disorders 31 (8), 1240–1243. doi: 10.1002/mds.26669. PubMed DOI PMC
Teplitzky BA, Zitella LM, Xiao Y, Johnson MD, 2016. Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets. Front Comput Neurosci 58. doi: 10.3389/fncom.2016.00058, Published online. PubMed DOI PMC
Tracey DJ, Asanuma C, Jones EG, Porter R, 1980. Thalamic relay to motor cortex: afferent pathways from brain stem, cerebellum, and spinal cord in monkeys. J. Neurophysiol 44 (3), 532–554. PubMed
Vedam-Mai V, Krock N, Ullman M, et al., 2011. The national DBS brain tissue network pilot study: need for more tissue and more standardization. Cell Tissue Bank 12 (3), 219–231. doi: 10.1007/s10561-010-9189-1. PubMed DOI