Determination of the Ecotoxicity of Herbicides Roundup® Classic Pro and Garlon New in Aquatic and Terrestrial Environments
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MSMT No 21-SVV/2019
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32937994
PubMed Central
PMC7569783
DOI
10.3390/plants9091203
PII: plants9091203
Knihovny.cz E-zdroje
- Klíčová slova
- AMPA, Desmodesmus subspicatus, Garlon, Lemna minor, Roundup, dehydrogenase activity, ecotoxicity, glyphosate, herbicides, triclopyr,
- Publikační typ
- časopisecké články MeSH
Herbicides help increase agricultural yields significantly, but they may negatively impact the life of non-target organisms. Modifying the life cycle of primary producers can affect other organisms in the food chain, and consequently in the whole ecosystem. We investigated the effect of common herbicides Roundup® Classic Pro (active substance glyphosate) and Garlon New (triclopyr and fluroxypyr) on aquatic organisms duckweed Lemna minor and green algae Desmodesmus subspicatus, and on the enzymatic activity of soil. We also compared the effects of Roundup® Classic Pro to that of a metabolite of its active substance, aminomethylphosphonic acid (AMPA). The results of an algal growth test showed that AMPA has a 1.5× weaker inhibitory effect on the growth of D. subspicatus than the Roundup formula, and the strongest growth inhibition was caused by Garlon New (IC50Roundup = 267.3 µg/L, IC50Garlon = 21.0 µg/L, IC50AMPA = 117.8 mg/L). The results of the duckweed growth inhibition test revealed that Roundup and Garlon New caused 100% growth inhibition of L. minor even at significantly lower concentrations than the ready-to-use concentration. The total chlorophyll content in the fronds was lowest when Garlon New was used. The highest dehydrogenase activity was observed in soil treated with Garlon New, and the lowest in soil treated with Roundup® Classic Pro. The results of this study showed that all three tested substances were ecotoxic to the tested organisms.
Zobrazit více v PubMed
Jeschke P. Progress of modern agricultural chemistry and future prospects. Pest Manag. Sci. 2016;72:433–455. doi: 10.1002/ps.4190. PubMed DOI
Stoyanova S., Georgieva E., Velcheva I., Iliev I., Vasileva T., Bivolarski V., Tomov S., Nyeste K., Antal L., Yancheva V. Multi-biomarker assessment in common carp (Cyprinus carpio, Linnaeus 1758) liver after acute chlorpyrifos exposure. Water. 2020;12:1837. doi: 10.3390/w12061837. DOI
Cavalcante D., Martinez C.B.R., Sofia S.H. Genotoxic effects of Roundup (R) on the fish Prochilodus lineatus. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2008;655:41–46. doi: 10.1016/j.mrgentox.2008.06.010. PubMed DOI
Cavas T., Konen S. Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis. 2007;22:263–268. doi: 10.1093/mutage/gem012. PubMed DOI
Kreutzweiser D.P., Thompson D.G., Capell S.S., Thomas D.R., Staznik B. Field-evaluation of triclopyr ester toxicity to fish. Arch. Environ. Contam. Toxicol. 1995;28:18–26. doi: 10.1007/BF00213964. DOI
Williams G.M., Kroes R., Munro I.C. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharmacol. 2000;31:117–165. doi: 10.1006/rtph.1999.1371. PubMed DOI
Woodburn A.T. Glyphosate: Production, pricing and use worldwide. Pest Manag. Sci. 2000;56:309–312. doi: 10.1002/(SICI)1526-4998(200004)56:4<309::AID-PS143>3.0.CO;2-C. DOI
Duke S.O., Powles S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008;64:319–325. doi: 10.1002/ps.1518. PubMed DOI
Ware G.W. The Pesticide Book. Volume 6 Meister Media Worldwide; Willoughby, OH, USA: 2004.
Schonbrunn E., Eschenburg S., Shuttleworth W.A., Schloss J.V., Amrhein N., Evans J.N.S., Kabsch W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyvuvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA. 2001;98:1376–1380. doi: 10.1073/pnas.98.4.1376. PubMed DOI PMC
Mottier A., Kientz-Bouchart V., Serpentini A., Lebel J.M., Jha A.N., Costil K. Effects of glyphosate-based herbicides on embryo-larval development and metamorphosis in the Pacific oyster, Crassostrea gigas. Aquat. Toxicol. 2013;128:67–78. doi: 10.1016/j.aquatox.2012.12.002. PubMed DOI
Gasnier C., Dumont C., Benachour N., Clair E., Chagnon M.C., Seralini G.E. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology. 2009;262:184–191. doi: 10.1016/j.tox.2009.06.006. PubMed DOI
Freitas-Silva L.D., Araujo T.O.D., Nunes-Nesi A., Ribeiro C., Costa A.C., da Silva L.C. Evaluation of morphological and metabolic responses to glyphosate exposure in two neotropical plant species. Ecol. Indic. 2020;113:11. doi: 10.1016/j.ecolind.2020.106246. DOI
Tahir H.M., Basheer T., Ali S., Yaqoob R., Naseem S., Khan S.Y. Effect of pesticides on biological control potential of neoscona theisi (Araneae: Araneidae) J. Insect Sci. 2019;19:6. doi: 10.1093/jisesa/iez024. PubMed DOI PMC
Korenko S., Niedobova J., Kolarova M., Hamouzova K., Kysilkova K., Michalko R. The effect of eight common herbicides on the predatory activity of the agrobiont spider Pardosa agrestis. Biocontrol. 2016;61:507–517. doi: 10.1007/s10526-016-9729-0. DOI
Verderame M., Scudiero R. How glyphosate impairs liver condition in the field lizard podarcis siculus (Rafinesque-Schmaltz, 1810): Histological and molecular evidence. BioMed Res. Int. 2019;2019:4746283. doi: 10.1155/2019/4746283. PubMed DOI PMC
Santadino M., Coviella C., Momo F. Glyphosate sublethal effects on the population dynamics of the earthworm eisenia fetida (Savigny, 1826) Water Air Soil Pollut. 2014;225:8. doi: 10.1007/s11270-014-2207-3. DOI
Samal S., Mishra C.S.K., Sahoo S. Dermal, histological anomalies with variations in enzyme activities of the earthworms Lampito mauritii and Drawida willsi after short term exposure to organophosphate pesticides. ISJ Invertebr. Surviv. J. 2020;17:117–128.
Antoniolli Z.I., Redin M., Souza E.L.D., Pocojeski E. Heavy metal, pesticides and fuels: Effect in the population of collembola in the soil. Cienc. Rural. 2013;43:992–998. doi: 10.1590/S0103-84782013005000056. DOI
Grunewald K., Schmidt W., Unger C., Hanschmann G. Behavior of glyphosate and aminomethylphosphonic acid (AMPA) in soils and water of reservoir Radeburg II catchment (Saxony/Germany) J. Plant Nutr. Soil Sci. 2001;164:65–70. doi: 10.1002/1522-2624(200102)164:1<65::AID-JPLN65>3.0.CO;2-G. DOI
Duke S.O. Glyphosate degradation in glyphosate-resistant and -susceptible crops and weeds. J. Agric. Food Chem. 2011;59:5835–5841. doi: 10.1021/jf102704x. PubMed DOI
Barrett K.A., McBride M.B. Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide. Environ. Sci. Technol. 2005;39:9223–9228. doi: 10.1021/es051342d. PubMed DOI
Pizzul L., Castillo M.D., Stenstrom J. Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation. 2009;20:751–759. doi: 10.1007/s10532-009-9263-1. PubMed DOI
Vreeken R.J., Speksnijder P., Bobeldijk-Pastorova I., Noij T.H.M. Selective analysis of the herbicides glyphosate and aminomethylphosphonic acid in water by on-line solid-phase extraction high-performance liquid chromatography electrospray ionization mass spectrometry. J. Chromatogr. A. 1998;794:187–199. doi: 10.1016/S0021-9673(97)01129-1. DOI
Coupe R.H., Kalkhoff S.J., Capel P.D., Gregoire C. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag. Sci. 2012;68:16–30. doi: 10.1002/ps.2212. PubMed DOI
Battaglin W.A., Meyer M.T., Kuivila K.M., Dietze J.E. Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation(1) J. Am. Water Resour. Assoc. 2014;50:275–290. doi: 10.1111/jawr.12159. DOI
Grandcoin A., Piel S., Baures E. AminoMethylPhosphonic acid (AMPA) in natural waters: Its sources, behavior and environmental fate. Water Res. 2017;117:187–197. doi: 10.1016/j.watres.2017.03.055. PubMed DOI
Rodrigues L.D., Costa G.G., Tha E.L., Silva L.R.d., Oliveira R.d., Leme D.M., Cestari M.M., Grisolia C.K., Valadares M.C., Oliveira G.A.R.d. Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatic organisms. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019;842:94–101. doi: 10.1016/j.mrgentox.2019.05.002. PubMed DOI
Merey G.V., Manson P.S., Mehrsheikh A., Sutton P., Levine S.L. Glyphosate and aminomethylphosphonic acid chronic risk assessment for soil biota. Environ. Toxicol. Chem. 2016;35:2742–2752. doi: 10.1002/etc.3438. PubMed DOI
Tsui M.T.K., Chu L.M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere. 2003;52:1189–1197. doi: 10.1016/S0045-6535(03)00306-0. PubMed DOI
Howe C.M., Berrill M., Pauli B.D., Helbing C.C., Werry K., Veldhoen N. Toxicity of glyphosate-based pesticides to four North American frog species. Environ. Toxicol. Chem. 2004;23:1928–1938. doi: 10.1897/03-71. PubMed DOI
Bonansea R.I., Filippi I., Wunderlin D.A., Marino D.J.G., Ame M.V. The fate of glyphosate and AMPA in a freshwater endorheic basin: An ecotoxicological risk assessment. Toxics. 2018;6:3. doi: 10.3390/toxics6010003. PubMed DOI PMC
Getsinger K.D., Petty D.G., Madsen J.D., Skogerboe J.G., Houtman B.A., Haller W.T., Fox A.M. Aquatic dissipation of the herbicide triclopyr in Lake Minnetonka, Minnesota. Pest Manag. Sci. 2000;56:388–400. doi: 10.1002/(SICI)1526-4998(200005)56:5<388::AID-PS150>3.0.CO;2-U. DOI
Petty D.G., Getsinger K.D., Woodburn K.B. A review of the aquatic environmental fate of triclopyr and its major metabolites. J. Aquat. Plant Manag. 2003;41:69–75.
Isbister K.M., Lamb E.G., Stewart K.J. Herbicide toxicity testing with non-target boreal plants: The sensitivity of achillea millefolium L. and chamerion angustifolium L. to triclopyr and imazapyr. Environ. Manag. 2017;60:136–156. doi: 10.1007/s00267-017-0867-7. PubMed DOI
Kreutzweiser D.P., Holmes S.B., Behmer D.J. Effects of the Herbicides hexazinone and triclopyr ester on aquatic insects. Ecotox. Environ. Safe. 1992;23:364–374. doi: 10.1016/0147-6513(92)90085-H. PubMed DOI
Guilherme S., Santos M.A., Gaivao I., Pacheco M. Genotoxicity evaluation of the herbicide Garlon((R)) and its active ingredient (triclopyr) in fish (Anguilla anguilla L.) using the comet assay. Environ. Toxicol. 2015;30:1073–1081. doi: 10.1002/tox.21980. PubMed DOI
Yahnke A.E., Grue C.E., Hayes M.P., Pearman-Gillman S. Effects of the herbicide triclopyr on metamorphic northern red-legged frogs. Environ. Toxicol. Chem. 2017;36:2316–2326. doi: 10.1002/etc.3767. PubMed DOI
Curtis A.N., Bidart M.G. Effects of chemical management for invasive plants on the performance of Lithobates pipiens tadpoles. Environ. Toxicol. Chem. 2017;36:2958–2964. doi: 10.1002/etc.3859. PubMed DOI
Berrill M., Bertram S., McGillivray L., Kolohon M., Pauli B. Effects of low concentrations of forest-use pesticides on frog embryous and tadpoles. Environ. Toxicol. Chem. 1994;13:657–664. doi: 10.1002/etc.5620130416. DOI
Perez-Lucas G., Vela N., Abellan M., Fenoll J., Navarro S. Use of index-based screening models to evaluate the leaching of triclopyr and fluroxypyr through a loam soil amended with vermicompost. Bull. Environ. Contam. Toxicol. 2020;104:497–502. doi: 10.1007/s00128-020-02818-9. PubMed DOI
Grossmann K. Auxin herbicides: Current status of mechanism and mode of action. Pest Manag. Sci. 2010;66:113–120. doi: 10.1002/ps.1860. PubMed DOI
Perez-Lucas G., Aliste M., Vela N., Garrido I., Fenoll J., Navarro S. Decline of fluroxypyr and triclopyr residues from pure, drinking and leaching water by photo-assisted peroxonation. Process Saf. Environ. Protect. 2020;137:358–365. doi: 10.1016/j.psep.2020.02.039. DOI
Morais E.C., Lattuada R.M., Correa G.G., Brambilla R., Santos J.H.Z.D. Evaluating the effect of pharmaceuticals encapsulated in silica by the sol-gel method on algal growth inhibition. J. Sol-Gel Sci. Technol. 2020;94:628–636. doi: 10.1007/s10971-019-05194-x. DOI
Pokora W., Bascik-Remisiewicz A., Tukaj S., Kalinowska R., Pawlik-Skowronska B., Dziadziuszko M., Tukaj Z. Adaptation strategies of two closely related Desmodesmus armatus (green alga) strains contained different amounts of cadmium: A study with light-induced synchronized cultures of algae. J. Plant Physiol. 2014;171:69–77. doi: 10.1016/j.jplph.2013.10.006. PubMed DOI
Guidony N.S., Lopes F.M., Guimaraes P.S., Escarrone A.L.V., Souza M.M. Can short-term exposure to copper and atrazine be cytotoxic to microalgae? Environ. Sci. Pollut. Res. 2020;27:27961–27970. doi: 10.1007/s11356-020-09149-6. PubMed DOI
Boutin C., Freemark K.E., Keddy C.J. Overview and rationale for developing regulatory guidelines for nontarget plant-testing with chemical pesticides. Environ. Toxicol. Chem. 1995;14:1465–1475. doi: 10.1002/etc.5620140905. DOI
Ouyang Z., Yang Z., Feng G., Zhao Y. Analysis on enrichment of aquatic plants response to different heavy metal ions in polluted water taking duckweed as an example. Appl. Ecol. Environ. Res. 2019;17:3469–3482. doi: 10.15666/aeer/1702_34693482. DOI
Shirinpur-Valadi A., Hatamzadeh A., Sedaghathoor S. Study of the accumulation of contaminants by Cyperus alternifolius, Lemna minor, Eichhornia crassipes, and Canna x generalis in some contaminated aquatic environments. Environ. Sci. Pollut. Res. 2019;26:21340–21350. doi: 10.1007/s11356-019-05203-0. PubMed DOI
Kostopoulou S., Ntatsi G., Arapis G., Aliferis K.A. Assessment of the effects of metribuzin, glyphosate, and their mixtures on the metabolism of the model plant Lemna minor L. applying metabolomics. Chemosphere. 2020;239:12. doi: 10.1016/j.chemosphere.2019.124582. PubMed DOI
Ubuza L.J.A., Padero P.C.S., Nacalaban C.M.N., Tolentino J.T., Alcoran D.C., Tolentino J.C., Ido A.L., Mabayo V.I.F., Arazo R.O. Assessment of the potential of duckweed (Lemna minor L.) in treating lead-contaminated water through phytoremediation in stationary and recirculated set-ups. Environ. Eng. Res. 2020;25:977–982. doi: 10.4491/eer.2019.258. DOI
Chen D.Q., Zhang H., Wang Q.L., Shao M., Li X.Y., Chen D.M., Zeng R.S., Song Y.Y. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza) J. Hazard. Mater. 2020;395:10. doi: 10.1016/j.jhazmat.2020.122672. PubMed DOI
Chaudhary E., Sharma P. Chromium and cadmium removal from wastewater using duckweed-Lemna gibba L. and ultrastructural deformation due to metal toxicity. Int. J. Phytoremediat. 2019;21:279–286. doi: 10.1080/15226514.2018.1522614. PubMed DOI
Osama R., Awad H.M., Ibrahim M.G., Tawfik A. Mechanistic and economic assessment of polyester wastewater treatment via baffled duckweed pond. J. Water Process. Eng. 2020;35:10. doi: 10.1016/j.jwpe.2020.101179. DOI
Pertile M., Antunes J.E.L., Araujo F.F., Mendes L.W., Van den Brink P.J., Araujo A.S.F. Responses of soil microbial biomass and enzyme activity to herbicides imazethapyr and flumioxazin. Sci. Rep. 2020;10:9. doi: 10.1038/s41598-020-64648-3. PubMed DOI PMC
Bennicelli R.P., Szafranek-Nakonieczna A., Wolinska A., Stepniewska Z., Bogudzinska M. Influence of pesticide (glyphosate) on dehydrogenase activity, pH, Eh and gases production in soil (laboratory conditions) Int. Agrophys. 2009;23:117–122.
Sebiomo A., Ogundero V.W., Bankole S.A. Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr. J. Biotechnol. 2011;10:770–778.
Bold H.C., Bischoff H.W. Phycological Studies IV. Some Soil Algae from Enchanted Rock and Related Algal Species. University of Texas Publication; Austin, TX, USA: 1963. p. 95. No. 6318.
ISO . Water Quality-Fresh Water Algal Growth Inhibition Test with Unicellular Green Algae (ISO 8692:2012) Office for Standards, Metrology and Testing; Prague, Czechia: 2012. p. 24.
ISO . Water Quality-Determination of the Toxic Effect of Water Constituents and Waste Water on Duckweed (Lemna minor)-Duckweed Growth Inhibition Test (ISO 20079:2005) Czech Standards Institute; Prague, Czechia: 2007. p. 28.
Technical Committee ISO/TC 190, S.q., Subcommittee SC4 . Soil Quality-Determination of Dehydrogenases Activity in Solis-Part 1: Method Using Triphenyltetrazolium Chloride (TTC) (ISO 23753-1:2019) European Comittee for Standardization; Brussels, Belgium: 2019. p. 9.
Wellburn A.R. The spectral determination of Chlorophyll-a and Chlorophyll-b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI
ISO . Soil QUALITY-SAMPLING-Part 6: Guidance on the Collection, Handling and Storage of Soil under Aerobic Conditions for the Assessment of Microbiological Processes, Biomass and Diversity in the Laboratory (ISO 10381-6:2009) Office for Standards, Metrology and Testing; Prague, Czechia: 2011. p. 12.
ISO . Soil Quality-Determination of pH (ISO 10390:2005) Office for Standards, Metrology and Testing; Prague, Czechia: 2011. p. 12.
ISO . Soil Quality-Determination of Dry Matter and Water Content on a Mass Basis-Gravimetric Method (ISO 11465:1993) Czech Standards Institute; Prague, Czechia: 1998. p. 7.
EFSA Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2015;13:107. doi: 10.2903/j.efsa.2015.4302. PubMed DOI PMC
Nagai T. Sensitivity differences among seven algal species to 12 herbicides with various modes of action. J. Pestic. Sci. 2019;44:225–232. doi: 10.1584/jpestics.D19-039. PubMed DOI PMC
Saenz M.E., Marzio W.D.D. Ecotoxicity of herbicide Glyphosate to four chlorophyceaen freshwater algae. Limnetica. 2009;28:149–158.
Ma J. Differential sensitivity to 30 herbicides among populations of two green algae Scenedesmus obliquus and Chlorella pyrenoidosa. Bull. Environ. Contam. Toxicol. 2002;68:275–281. doi: 10.1007/s001280249. PubMed DOI
Vendrell E., Ferraz D., Sabater C., Carrasco J.M. Effect of glyphosate on growth of four freshwater species of phytoplankton: A microplate bioassay. Bull. Environ. Contam. Toxicol. 2009;82:538–542. doi: 10.1007/s00128-009-9674-z. PubMed DOI
Daouk S., Copin P.J., Rossi L., Chevre N., Pfeifer H.R. Dynamics and environmental risk assessment of the herbicide glyphosate and its metabolite AMPA in a small vineyard river of the Lake Geneva catchment. Environ. Toxicol. Chem. 2013;32:2035–2044. doi: 10.1002/etc.2276. PubMed DOI
Peterson H.G., Boutin C., Martin P.A., Freemark K.E., Ruecker N.J., Moody M.J. Aquatic phyto-toxicity of 23 pesticides applied at expected environmental concentrations. Aquat. Toxicol. 1994;28:275–292. doi: 10.1016/0166-445X(94)90038-8. DOI
Zhang S.A., Qiu C.B., Zhou Y., Jin Z.P., Yang H. Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology. 2011;20:337–347. doi: 10.1007/s10646-010-0583-z. PubMed DOI
Sikorski L., Baciak M., Bes A., Adomas B. The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species. Aquat. Toxicol. 2019;209:70–80. doi: 10.1016/j.aquatox.2019.01.021. PubMed DOI
Kielak E., Sempruch C., Mioduszewska H., Klocek J., Leszczynski B. Phytotoxicity of roundup ultra 360 SL in aquatic ecosystems: Biochemical evaluation with duckweed (Lemna minor L.) as a model plant. Pest. Biochem. Physiol. 2011;99:237–243. doi: 10.1016/j.pestbp.2011.01.002. DOI
Gomes M.P., Juneau P. Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: Is the mitochondrial electron transport chain a target of this herbicide? Environ. Pollut. 2016;218:402–409. doi: 10.1016/j.envpol.2016.07.019. PubMed DOI
Zhou J.A., Wu Z.H., Yu D., Yang L. Toxicity of the herbicide flurochloridone to the aquatic plants Ceratophyllum demersum and Lemna minor. Environ. Sci. Pollut. Res. 2020;27:3923–3932. doi: 10.1007/s11356-019-06477-0. PubMed DOI
Sobrero M.C., Rimoldi F., Ronco A.E. Effects of the glyphosate active ingredient and a formulation on Lemna gibba L. at different exposure levels and assessment end-points. Bull. Environ. Contam. Toxicol. 2007;79:537–543. doi: 10.1007/s00128-007-9277-5. PubMed DOI
Cowgill U.M., Milazzo D.P., Landenberger B.D. A Comparison of the effect of triclopyr triethylamine salt on 2 species of duckweed (Lemna) examined for a 7-Day and 14-Day test period. Water Res. 1989;23:617–623. doi: 10.1016/0043-1354(89)90028-6. DOI
Authority E.F.S. Conclusion on the peer review of the pesticide risk assessment of the active substance fluroxypyr (evaluated variant fluroxypyr-meptyl) EFSA J. 2011;9:91. doi: 10.2903/j.efsa.2011.2091. DOI
Campos J.A., Peco J.D., Garcia-Noguero E. Antigerminative comparison between naturally occurring naphthoquinones and commercial pesticides. Soil dehydrogenase activity used as bioindicator to test soil toxicity. Sci. Total Environ. 2019;694:7. doi: 10.1016/j.scitotenv.2019.133672. PubMed DOI
Zabaloy M.C., Garland J.L., Gomez M.A. An integrated approach, to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Appl. Soil Ecol. 2008;40:1–12. doi: 10.1016/j.apsoil.2008.02.004. DOI
Gimsing A.L., Borggaard O.K., Bang M. Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils. Eur. J. Soil Sci. 2004;55:183–191. doi: 10.1046/j.1365-2389.2003.00585.x. DOI
Lupwayi N.Z., Hanson K.G., Harker K.N., Clayton G.W., Blackshaw R.E., O’Donovan J.T., Johnson E.N., Gan Y., Irvine R.B., Monreal M.A. Soil microbial biomass, functional diversity and enzyme activity in glyphosate-resistant wheat-canola rotations under low-disturbance direct seeding and conventional tillage. Soil Biol. Biochem. 2007;39:1418–1427. doi: 10.1016/j.soilbio.2006.12.038. DOI
Zofia W.A.S. Dehydrogenase activity in the soil environment. Dehydrogenases. 2012 doi: 10.5772/48294. DOI
Araujo A.S.F., Monteiro R.T.R., Abarkeli R.B. Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere. 2003;52:799–804. doi: 10.1016/S0045-6535(03)00266-2. PubMed DOI
Garcia-Perez J.A., Alarcon-Gutierrez E., Diaz-Fleischer F. Interactive effect of glyphosate-based herbicides and organic soil layer thickness on growth and reproduction of the tropical earthworm Pontoscolex corethrurus (Muller, 1857) Appl. Soil Ecol. 2020;155:10. doi: 10.1016/j.apsoil.2020.103648. DOI