Determination of the Ecotoxicity of Herbicides Roundup® Classic Pro and Garlon New in Aquatic and Terrestrial Environments

. 2020 Sep 14 ; 9 (9) : . [epub] 20200914

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32937994

Grantová podpora
MSMT No 21-SVV/2019 Ministerstvo Školství, Mládeže a Tělovýchovy

Herbicides help increase agricultural yields significantly, but they may negatively impact the life of non-target organisms. Modifying the life cycle of primary producers can affect other organisms in the food chain, and consequently in the whole ecosystem. We investigated the effect of common herbicides Roundup® Classic Pro (active substance glyphosate) and Garlon New (triclopyr and fluroxypyr) on aquatic organisms duckweed Lemna minor and green algae Desmodesmus subspicatus, and on the enzymatic activity of soil. We also compared the effects of Roundup® Classic Pro to that of a metabolite of its active substance, aminomethylphosphonic acid (AMPA). The results of an algal growth test showed that AMPA has a 1.5× weaker inhibitory effect on the growth of D. subspicatus than the Roundup formula, and the strongest growth inhibition was caused by Garlon New (IC50Roundup = 267.3 µg/L, IC50Garlon = 21.0 µg/L, IC50AMPA = 117.8 mg/L). The results of the duckweed growth inhibition test revealed that Roundup and Garlon New caused 100% growth inhibition of L. minor even at significantly lower concentrations than the ready-to-use concentration. The total chlorophyll content in the fronds was lowest when Garlon New was used. The highest dehydrogenase activity was observed in soil treated with Garlon New, and the lowest in soil treated with Roundup® Classic Pro. The results of this study showed that all three tested substances were ecotoxic to the tested organisms.

Zobrazit více v PubMed

Jeschke P. Progress of modern agricultural chemistry and future prospects. Pest Manag. Sci. 2016;72:433–455. doi: 10.1002/ps.4190. PubMed DOI

Stoyanova S., Georgieva E., Velcheva I., Iliev I., Vasileva T., Bivolarski V., Tomov S., Nyeste K., Antal L., Yancheva V. Multi-biomarker assessment in common carp (Cyprinus carpio, Linnaeus 1758) liver after acute chlorpyrifos exposure. Water. 2020;12:1837. doi: 10.3390/w12061837. DOI

Cavalcante D., Martinez C.B.R., Sofia S.H. Genotoxic effects of Roundup (R) on the fish Prochilodus lineatus. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2008;655:41–46. doi: 10.1016/j.mrgentox.2008.06.010. PubMed DOI

Cavas T., Konen S. Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis. 2007;22:263–268. doi: 10.1093/mutage/gem012. PubMed DOI

Kreutzweiser D.P., Thompson D.G., Capell S.S., Thomas D.R., Staznik B. Field-evaluation of triclopyr ester toxicity to fish. Arch. Environ. Contam. Toxicol. 1995;28:18–26. doi: 10.1007/BF00213964. DOI

Williams G.M., Kroes R., Munro I.C. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharmacol. 2000;31:117–165. doi: 10.1006/rtph.1999.1371. PubMed DOI

Woodburn A.T. Glyphosate: Production, pricing and use worldwide. Pest Manag. Sci. 2000;56:309–312. doi: 10.1002/(SICI)1526-4998(200004)56:4<309::AID-PS143>3.0.CO;2-C. DOI

Duke S.O., Powles S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008;64:319–325. doi: 10.1002/ps.1518. PubMed DOI

Ware G.W. The Pesticide Book. Volume 6 Meister Media Worldwide; Willoughby, OH, USA: 2004.

Schonbrunn E., Eschenburg S., Shuttleworth W.A., Schloss J.V., Amrhein N., Evans J.N.S., Kabsch W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyvuvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA. 2001;98:1376–1380. doi: 10.1073/pnas.98.4.1376. PubMed DOI PMC

Mottier A., Kientz-Bouchart V., Serpentini A., Lebel J.M., Jha A.N., Costil K. Effects of glyphosate-based herbicides on embryo-larval development and metamorphosis in the Pacific oyster, Crassostrea gigas. Aquat. Toxicol. 2013;128:67–78. doi: 10.1016/j.aquatox.2012.12.002. PubMed DOI

Gasnier C., Dumont C., Benachour N., Clair E., Chagnon M.C., Seralini G.E. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology. 2009;262:184–191. doi: 10.1016/j.tox.2009.06.006. PubMed DOI

Freitas-Silva L.D., Araujo T.O.D., Nunes-Nesi A., Ribeiro C., Costa A.C., da Silva L.C. Evaluation of morphological and metabolic responses to glyphosate exposure in two neotropical plant species. Ecol. Indic. 2020;113:11. doi: 10.1016/j.ecolind.2020.106246. DOI

Tahir H.M., Basheer T., Ali S., Yaqoob R., Naseem S., Khan S.Y. Effect of pesticides on biological control potential of neoscona theisi (Araneae: Araneidae) J. Insect Sci. 2019;19:6. doi: 10.1093/jisesa/iez024. PubMed DOI PMC

Korenko S., Niedobova J., Kolarova M., Hamouzova K., Kysilkova K., Michalko R. The effect of eight common herbicides on the predatory activity of the agrobiont spider Pardosa agrestis. Biocontrol. 2016;61:507–517. doi: 10.1007/s10526-016-9729-0. DOI

Verderame M., Scudiero R. How glyphosate impairs liver condition in the field lizard podarcis siculus (Rafinesque-Schmaltz, 1810): Histological and molecular evidence. BioMed Res. Int. 2019;2019:4746283. doi: 10.1155/2019/4746283. PubMed DOI PMC

Santadino M., Coviella C., Momo F. Glyphosate sublethal effects on the population dynamics of the earthworm eisenia fetida (Savigny, 1826) Water Air Soil Pollut. 2014;225:8. doi: 10.1007/s11270-014-2207-3. DOI

Samal S., Mishra C.S.K., Sahoo S. Dermal, histological anomalies with variations in enzyme activities of the earthworms Lampito mauritii and Drawida willsi after short term exposure to organophosphate pesticides. ISJ Invertebr. Surviv. J. 2020;17:117–128.

Antoniolli Z.I., Redin M., Souza E.L.D., Pocojeski E. Heavy metal, pesticides and fuels: Effect in the population of collembola in the soil. Cienc. Rural. 2013;43:992–998. doi: 10.1590/S0103-84782013005000056. DOI

Grunewald K., Schmidt W., Unger C., Hanschmann G. Behavior of glyphosate and aminomethylphosphonic acid (AMPA) in soils and water of reservoir Radeburg II catchment (Saxony/Germany) J. Plant Nutr. Soil Sci. 2001;164:65–70. doi: 10.1002/1522-2624(200102)164:1<65::AID-JPLN65>3.0.CO;2-G. DOI

Duke S.O. Glyphosate degradation in glyphosate-resistant and -susceptible crops and weeds. J. Agric. Food Chem. 2011;59:5835–5841. doi: 10.1021/jf102704x. PubMed DOI

Barrett K.A., McBride M.B. Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide. Environ. Sci. Technol. 2005;39:9223–9228. doi: 10.1021/es051342d. PubMed DOI

Pizzul L., Castillo M.D., Stenstrom J. Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation. 2009;20:751–759. doi: 10.1007/s10532-009-9263-1. PubMed DOI

Vreeken R.J., Speksnijder P., Bobeldijk-Pastorova I., Noij T.H.M. Selective analysis of the herbicides glyphosate and aminomethylphosphonic acid in water by on-line solid-phase extraction high-performance liquid chromatography electrospray ionization mass spectrometry. J. Chromatogr. A. 1998;794:187–199. doi: 10.1016/S0021-9673(97)01129-1. DOI

Coupe R.H., Kalkhoff S.J., Capel P.D., Gregoire C. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag. Sci. 2012;68:16–30. doi: 10.1002/ps.2212. PubMed DOI

Battaglin W.A., Meyer M.T., Kuivila K.M., Dietze J.E. Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation(1) J. Am. Water Resour. Assoc. 2014;50:275–290. doi: 10.1111/jawr.12159. DOI

Grandcoin A., Piel S., Baures E. AminoMethylPhosphonic acid (AMPA) in natural waters: Its sources, behavior and environmental fate. Water Res. 2017;117:187–197. doi: 10.1016/j.watres.2017.03.055. PubMed DOI

Rodrigues L.D., Costa G.G., Tha E.L., Silva L.R.d., Oliveira R.d., Leme D.M., Cestari M.M., Grisolia C.K., Valadares M.C., Oliveira G.A.R.d. Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatic organisms. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019;842:94–101. doi: 10.1016/j.mrgentox.2019.05.002. PubMed DOI

Merey G.V., Manson P.S., Mehrsheikh A., Sutton P., Levine S.L. Glyphosate and aminomethylphosphonic acid chronic risk assessment for soil biota. Environ. Toxicol. Chem. 2016;35:2742–2752. doi: 10.1002/etc.3438. PubMed DOI

Tsui M.T.K., Chu L.M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere. 2003;52:1189–1197. doi: 10.1016/S0045-6535(03)00306-0. PubMed DOI

Howe C.M., Berrill M., Pauli B.D., Helbing C.C., Werry K., Veldhoen N. Toxicity of glyphosate-based pesticides to four North American frog species. Environ. Toxicol. Chem. 2004;23:1928–1938. doi: 10.1897/03-71. PubMed DOI

Bonansea R.I., Filippi I., Wunderlin D.A., Marino D.J.G., Ame M.V. The fate of glyphosate and AMPA in a freshwater endorheic basin: An ecotoxicological risk assessment. Toxics. 2018;6:3. doi: 10.3390/toxics6010003. PubMed DOI PMC

Getsinger K.D., Petty D.G., Madsen J.D., Skogerboe J.G., Houtman B.A., Haller W.T., Fox A.M. Aquatic dissipation of the herbicide triclopyr in Lake Minnetonka, Minnesota. Pest Manag. Sci. 2000;56:388–400. doi: 10.1002/(SICI)1526-4998(200005)56:5<388::AID-PS150>3.0.CO;2-U. DOI

Petty D.G., Getsinger K.D., Woodburn K.B. A review of the aquatic environmental fate of triclopyr and its major metabolites. J. Aquat. Plant Manag. 2003;41:69–75.

Isbister K.M., Lamb E.G., Stewart K.J. Herbicide toxicity testing with non-target boreal plants: The sensitivity of achillea millefolium L. and chamerion angustifolium L. to triclopyr and imazapyr. Environ. Manag. 2017;60:136–156. doi: 10.1007/s00267-017-0867-7. PubMed DOI

Kreutzweiser D.P., Holmes S.B., Behmer D.J. Effects of the Herbicides hexazinone and triclopyr ester on aquatic insects. Ecotox. Environ. Safe. 1992;23:364–374. doi: 10.1016/0147-6513(92)90085-H. PubMed DOI

Guilherme S., Santos M.A., Gaivao I., Pacheco M. Genotoxicity evaluation of the herbicide Garlon((R)) and its active ingredient (triclopyr) in fish (Anguilla anguilla L.) using the comet assay. Environ. Toxicol. 2015;30:1073–1081. doi: 10.1002/tox.21980. PubMed DOI

Yahnke A.E., Grue C.E., Hayes M.P., Pearman-Gillman S. Effects of the herbicide triclopyr on metamorphic northern red-legged frogs. Environ. Toxicol. Chem. 2017;36:2316–2326. doi: 10.1002/etc.3767. PubMed DOI

Curtis A.N., Bidart M.G. Effects of chemical management for invasive plants on the performance of Lithobates pipiens tadpoles. Environ. Toxicol. Chem. 2017;36:2958–2964. doi: 10.1002/etc.3859. PubMed DOI

Berrill M., Bertram S., McGillivray L., Kolohon M., Pauli B. Effects of low concentrations of forest-use pesticides on frog embryous and tadpoles. Environ. Toxicol. Chem. 1994;13:657–664. doi: 10.1002/etc.5620130416. DOI

Perez-Lucas G., Vela N., Abellan M., Fenoll J., Navarro S. Use of index-based screening models to evaluate the leaching of triclopyr and fluroxypyr through a loam soil amended with vermicompost. Bull. Environ. Contam. Toxicol. 2020;104:497–502. doi: 10.1007/s00128-020-02818-9. PubMed DOI

Grossmann K. Auxin herbicides: Current status of mechanism and mode of action. Pest Manag. Sci. 2010;66:113–120. doi: 10.1002/ps.1860. PubMed DOI

Perez-Lucas G., Aliste M., Vela N., Garrido I., Fenoll J., Navarro S. Decline of fluroxypyr and triclopyr residues from pure, drinking and leaching water by photo-assisted peroxonation. Process Saf. Environ. Protect. 2020;137:358–365. doi: 10.1016/j.psep.2020.02.039. DOI

Morais E.C., Lattuada R.M., Correa G.G., Brambilla R., Santos J.H.Z.D. Evaluating the effect of pharmaceuticals encapsulated in silica by the sol-gel method on algal growth inhibition. J. Sol-Gel Sci. Technol. 2020;94:628–636. doi: 10.1007/s10971-019-05194-x. DOI

Pokora W., Bascik-Remisiewicz A., Tukaj S., Kalinowska R., Pawlik-Skowronska B., Dziadziuszko M., Tukaj Z. Adaptation strategies of two closely related Desmodesmus armatus (green alga) strains contained different amounts of cadmium: A study with light-induced synchronized cultures of algae. J. Plant Physiol. 2014;171:69–77. doi: 10.1016/j.jplph.2013.10.006. PubMed DOI

Guidony N.S., Lopes F.M., Guimaraes P.S., Escarrone A.L.V., Souza M.M. Can short-term exposure to copper and atrazine be cytotoxic to microalgae? Environ. Sci. Pollut. Res. 2020;27:27961–27970. doi: 10.1007/s11356-020-09149-6. PubMed DOI

Boutin C., Freemark K.E., Keddy C.J. Overview and rationale for developing regulatory guidelines for nontarget plant-testing with chemical pesticides. Environ. Toxicol. Chem. 1995;14:1465–1475. doi: 10.1002/etc.5620140905. DOI

Ouyang Z., Yang Z., Feng G., Zhao Y. Analysis on enrichment of aquatic plants response to different heavy metal ions in polluted water taking duckweed as an example. Appl. Ecol. Environ. Res. 2019;17:3469–3482. doi: 10.15666/aeer/1702_34693482. DOI

Shirinpur-Valadi A., Hatamzadeh A., Sedaghathoor S. Study of the accumulation of contaminants by Cyperus alternifolius, Lemna minor, Eichhornia crassipes, and Canna x generalis in some contaminated aquatic environments. Environ. Sci. Pollut. Res. 2019;26:21340–21350. doi: 10.1007/s11356-019-05203-0. PubMed DOI

Kostopoulou S., Ntatsi G., Arapis G., Aliferis K.A. Assessment of the effects of metribuzin, glyphosate, and their mixtures on the metabolism of the model plant Lemna minor L. applying metabolomics. Chemosphere. 2020;239:12. doi: 10.1016/j.chemosphere.2019.124582. PubMed DOI

Ubuza L.J.A., Padero P.C.S., Nacalaban C.M.N., Tolentino J.T., Alcoran D.C., Tolentino J.C., Ido A.L., Mabayo V.I.F., Arazo R.O. Assessment of the potential of duckweed (Lemna minor L.) in treating lead-contaminated water through phytoremediation in stationary and recirculated set-ups. Environ. Eng. Res. 2020;25:977–982. doi: 10.4491/eer.2019.258. DOI

Chen D.Q., Zhang H., Wang Q.L., Shao M., Li X.Y., Chen D.M., Zeng R.S., Song Y.Y. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza) J. Hazard. Mater. 2020;395:10. doi: 10.1016/j.jhazmat.2020.122672. PubMed DOI

Chaudhary E., Sharma P. Chromium and cadmium removal from wastewater using duckweed-Lemna gibba L. and ultrastructural deformation due to metal toxicity. Int. J. Phytoremediat. 2019;21:279–286. doi: 10.1080/15226514.2018.1522614. PubMed DOI

Osama R., Awad H.M., Ibrahim M.G., Tawfik A. Mechanistic and economic assessment of polyester wastewater treatment via baffled duckweed pond. J. Water Process. Eng. 2020;35:10. doi: 10.1016/j.jwpe.2020.101179. DOI

Pertile M., Antunes J.E.L., Araujo F.F., Mendes L.W., Van den Brink P.J., Araujo A.S.F. Responses of soil microbial biomass and enzyme activity to herbicides imazethapyr and flumioxazin. Sci. Rep. 2020;10:9. doi: 10.1038/s41598-020-64648-3. PubMed DOI PMC

Bennicelli R.P., Szafranek-Nakonieczna A., Wolinska A., Stepniewska Z., Bogudzinska M. Influence of pesticide (glyphosate) on dehydrogenase activity, pH, Eh and gases production in soil (laboratory conditions) Int. Agrophys. 2009;23:117–122.

Sebiomo A., Ogundero V.W., Bankole S.A. Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr. J. Biotechnol. 2011;10:770–778.

Bold H.C., Bischoff H.W. Phycological Studies IV. Some Soil Algae from Enchanted Rock and Related Algal Species. University of Texas Publication; Austin, TX, USA: 1963. p. 95. No. 6318.

ISO . Water Quality-Fresh Water Algal Growth Inhibition Test with Unicellular Green Algae (ISO 8692:2012) Office for Standards, Metrology and Testing; Prague, Czechia: 2012. p. 24.

ISO . Water Quality-Determination of the Toxic Effect of Water Constituents and Waste Water on Duckweed (Lemna minor)-Duckweed Growth Inhibition Test (ISO 20079:2005) Czech Standards Institute; Prague, Czechia: 2007. p. 28.

Technical Committee ISO/TC 190, S.q., Subcommittee SC4 . Soil Quality-Determination of Dehydrogenases Activity in Solis-Part 1: Method Using Triphenyltetrazolium Chloride (TTC) (ISO 23753-1:2019) European Comittee for Standardization; Brussels, Belgium: 2019. p. 9.

Wellburn A.R. The spectral determination of Chlorophyll-a and Chlorophyll-b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI

ISO . Soil QUALITY-SAMPLING-Part 6: Guidance on the Collection, Handling and Storage of Soil under Aerobic Conditions for the Assessment of Microbiological Processes, Biomass and Diversity in the Laboratory (ISO 10381-6:2009) Office for Standards, Metrology and Testing; Prague, Czechia: 2011. p. 12.

ISO . Soil Quality-Determination of pH (ISO 10390:2005) Office for Standards, Metrology and Testing; Prague, Czechia: 2011. p. 12.

ISO . Soil Quality-Determination of Dry Matter and Water Content on a Mass Basis-Gravimetric Method (ISO 11465:1993) Czech Standards Institute; Prague, Czechia: 1998. p. 7.

EFSA Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2015;13:107. doi: 10.2903/j.efsa.2015.4302. PubMed DOI PMC

Nagai T. Sensitivity differences among seven algal species to 12 herbicides with various modes of action. J. Pestic. Sci. 2019;44:225–232. doi: 10.1584/jpestics.D19-039. PubMed DOI PMC

Saenz M.E., Marzio W.D.D. Ecotoxicity of herbicide Glyphosate to four chlorophyceaen freshwater algae. Limnetica. 2009;28:149–158.

Ma J. Differential sensitivity to 30 herbicides among populations of two green algae Scenedesmus obliquus and Chlorella pyrenoidosa. Bull. Environ. Contam. Toxicol. 2002;68:275–281. doi: 10.1007/s001280249. PubMed DOI

Vendrell E., Ferraz D., Sabater C., Carrasco J.M. Effect of glyphosate on growth of four freshwater species of phytoplankton: A microplate bioassay. Bull. Environ. Contam. Toxicol. 2009;82:538–542. doi: 10.1007/s00128-009-9674-z. PubMed DOI

Daouk S., Copin P.J., Rossi L., Chevre N., Pfeifer H.R. Dynamics and environmental risk assessment of the herbicide glyphosate and its metabolite AMPA in a small vineyard river of the Lake Geneva catchment. Environ. Toxicol. Chem. 2013;32:2035–2044. doi: 10.1002/etc.2276. PubMed DOI

Peterson H.G., Boutin C., Martin P.A., Freemark K.E., Ruecker N.J., Moody M.J. Aquatic phyto-toxicity of 23 pesticides applied at expected environmental concentrations. Aquat. Toxicol. 1994;28:275–292. doi: 10.1016/0166-445X(94)90038-8. DOI

Zhang S.A., Qiu C.B., Zhou Y., Jin Z.P., Yang H. Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology. 2011;20:337–347. doi: 10.1007/s10646-010-0583-z. PubMed DOI

Sikorski L., Baciak M., Bes A., Adomas B. The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species. Aquat. Toxicol. 2019;209:70–80. doi: 10.1016/j.aquatox.2019.01.021. PubMed DOI

Kielak E., Sempruch C., Mioduszewska H., Klocek J., Leszczynski B. Phytotoxicity of roundup ultra 360 SL in aquatic ecosystems: Biochemical evaluation with duckweed (Lemna minor L.) as a model plant. Pest. Biochem. Physiol. 2011;99:237–243. doi: 10.1016/j.pestbp.2011.01.002. DOI

Gomes M.P., Juneau P. Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: Is the mitochondrial electron transport chain a target of this herbicide? Environ. Pollut. 2016;218:402–409. doi: 10.1016/j.envpol.2016.07.019. PubMed DOI

Zhou J.A., Wu Z.H., Yu D., Yang L. Toxicity of the herbicide flurochloridone to the aquatic plants Ceratophyllum demersum and Lemna minor. Environ. Sci. Pollut. Res. 2020;27:3923–3932. doi: 10.1007/s11356-019-06477-0. PubMed DOI

Sobrero M.C., Rimoldi F., Ronco A.E. Effects of the glyphosate active ingredient and a formulation on Lemna gibba L. at different exposure levels and assessment end-points. Bull. Environ. Contam. Toxicol. 2007;79:537–543. doi: 10.1007/s00128-007-9277-5. PubMed DOI

Cowgill U.M., Milazzo D.P., Landenberger B.D. A Comparison of the effect of triclopyr triethylamine salt on 2 species of duckweed (Lemna) examined for a 7-Day and 14-Day test period. Water Res. 1989;23:617–623. doi: 10.1016/0043-1354(89)90028-6. DOI

Authority E.F.S. Conclusion on the peer review of the pesticide risk assessment of the active substance fluroxypyr (evaluated variant fluroxypyr-meptyl) EFSA J. 2011;9:91. doi: 10.2903/j.efsa.2011.2091. DOI

Campos J.A., Peco J.D., Garcia-Noguero E. Antigerminative comparison between naturally occurring naphthoquinones and commercial pesticides. Soil dehydrogenase activity used as bioindicator to test soil toxicity. Sci. Total Environ. 2019;694:7. doi: 10.1016/j.scitotenv.2019.133672. PubMed DOI

Zabaloy M.C., Garland J.L., Gomez M.A. An integrated approach, to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Appl. Soil Ecol. 2008;40:1–12. doi: 10.1016/j.apsoil.2008.02.004. DOI

Gimsing A.L., Borggaard O.K., Bang M. Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils. Eur. J. Soil Sci. 2004;55:183–191. doi: 10.1046/j.1365-2389.2003.00585.x. DOI

Lupwayi N.Z., Hanson K.G., Harker K.N., Clayton G.W., Blackshaw R.E., O’Donovan J.T., Johnson E.N., Gan Y., Irvine R.B., Monreal M.A. Soil microbial biomass, functional diversity and enzyme activity in glyphosate-resistant wheat-canola rotations under low-disturbance direct seeding and conventional tillage. Soil Biol. Biochem. 2007;39:1418–1427. doi: 10.1016/j.soilbio.2006.12.038. DOI

Zofia W.A.S. Dehydrogenase activity in the soil environment. Dehydrogenases. 2012 doi: 10.5772/48294. DOI

Araujo A.S.F., Monteiro R.T.R., Abarkeli R.B. Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere. 2003;52:799–804. doi: 10.1016/S0045-6535(03)00266-2. PubMed DOI

Garcia-Perez J.A., Alarcon-Gutierrez E., Diaz-Fleischer F. Interactive effect of glyphosate-based herbicides and organic soil layer thickness on growth and reproduction of the tropical earthworm Pontoscolex corethrurus (Muller, 1857) Appl. Soil Ecol. 2020;155:10. doi: 10.1016/j.apsoil.2020.103648. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Influence of Herbicides to Marine Organisms Aliivibrio fischeri and Artemia salina

. 2021 Oct 21 ; 9 (11) : . [epub] 20211021

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...