Impact of Number of Segmented Tissues on SAR Prediction Accuracy in Deep Pelvic Hyperthermia Treatment Planning
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
15195
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
PubMed
32947939
PubMed Central
PMC7563220
DOI
10.3390/cancers12092646
PII: cancers12092646
Knihovny.cz E-zdroje
- Klíčová slova
- 3D patient modeling, RF hyperthermia, deep hyperthermia treatment planning, tissue delineation and segmentation,
- Publikační typ
- časopisecké články MeSH
In hyperthermia, the general opinion is that pre-treatment optimization of treatment settings requires a patient-specific model. For deep pelvic hyperthermia treatment planning (HTP), tissue models comprising four tissue categories are currently discriminated. For head and neck HTP, we found that more tissues are required for increasing accuracy. In this work, we evaluated the impact of the number of segmented tissues on the predicted specific absorption rate (SAR) for the pelvic region. Highly detailed anatomical models of five healthy volunteers were selected from a virtual database. For each model, seven lists with varying levels of segmentation detail were defined and used as an input for a modeling study. SAR changes were quantified using the change in target-to-hotspot-quotient and maximum SAR relative differences, with respect to the most detailed patient model. The main finding of this study was that the inclusion of high water content tissues in the segmentation may result in a clinically relevant impact on the SAR distribution and on the predicted hyperthermia treatment quality when considering our pre-established thresholds. In general, our results underline the current clinical segmentation protocol and help to prioritize any improvements.
Zobrazit více v PubMed
Cihoric N., Tsikkinis A., Van Rhoon G., Crezee H., Aebersold D.M., Bodis-Wollner I., Beck M., Nadobny J., Budach V., Wust P., et al. Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry. Int. J. Hyperth. 2015;31:609–614. doi: 10.3109/02656736.2015.1040471. PubMed DOI
Datta N.R., Stutz E., Gomez S., Bodis S. Efficacy and Safety Evaluation of the Various Therapeutic Options in Locally Advanced Cervix Cancer: A Systematic Review and Network Meta-Analysis of Randomized Clinical Trials. Int. J. Radiat. Oncol. 2019;103:411–437. doi: 10.1016/j.ijrobp.2018.09.037. PubMed DOI
Van der Zee J. Heating the patient: A promising approach? Ann. Oncol. 2002;13:1173–1184. doi: 10.1093/annonc/mdf280. PubMed DOI
Kok H.P., Beck M., Löke D.R., Helderman R.F.C.P.A., Van Tienhoven G., Ghadjar P., Wust P., Crezee H. Locoregional peritoneal hyperthermia to enhance the effectiveness of chemotherapy in patients with peritoneal carcinomatosis: A simulation study comparing different locoregional heating systems. Int. J. Hyperth. 2020;37:76–88. doi: 10.1080/02656736.2019.1710270. PubMed DOI
International collaborative hypert. Vernon C., Hand J., Field S., Machin D., Whaley J., Zee J., Van Putten W., Vanrhoon G., Vandijk J. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials. Int. J. Radiat. Oncol. 1996;35:731–744. doi: 10.1016/0360-3016(96)00154-x. PubMed DOI
Overgaard J., Bentzen S.M., González D.G., Hulshof M.C.C.M., Arcangeli G., Dahl O., Mella O. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. Lancet Oncol. 1995;345:540–543. doi: 10.1016/S0140-6736(95)90463-8. PubMed DOI
Issels R., Lindner L.H., Verweij J., Wust P., Reichardt P., Schem B.-C., Abdel-Rahman S., Daugaard S., Salat C., Wendtner C.-M., et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: A randomised phase 3 multicentre study. Lancet Oncol. 2010;11:561–570. doi: 10.1016/S1470-2045(10)70071-1. PubMed DOI PMC
Zee J., Van Der González D.G., Rhoon G.C., Van Dijk J.D.P., Van Putten W.L.J. Van Comparison of Radiotherapy alone with Radiotherapy plus Hyperthermia in Locally Advanced Pelvic Tumors. Lancet. 2000;355:1119–1125. PubMed
Peeken J.C., Vaupel P., Combs S.E. Integrating Hyperthermia into Modern Radiation Oncology: What Evidence Is Necessary? Front. Oncol. 2017;7:7. doi: 10.3389/fonc.2017.00132. PubMed DOI PMC
Franckena M., Fatehi D., de Bruijne M., Canters R.A.M., van Norden Y., Mens J.W., van Rhoon G.C., van der Zee J. Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur. J. Cancer. 2009;45:1969–1978. doi: 10.1016/j.ejca.2009.03.009. PubMed DOI
Fatehi D., Van Der Zee J., Notenboom A., Van Rhoon G.C. Comparison of Intratumor and Intraluminal Temperatures During Locoregional Deep Hyperthermia of Pelvic Tumors. Strahlenther. Onkol. 2007;183:479–486. doi: 10.1007/s00066-007-1768-0. PubMed DOI
Kroesen M., Mulder H.T., Van Holthe J.M., Aangeenbrug A.A., Mens J.W.M., Van Doorn H.C., Paulides M.M., Hoop E.O.-D., Vernhout R.M., Lutgens L.C., et al. Confirmation of thermal dose as a predictor of local control in cervical carcinoma patients treated with state-of-the-art radiation therapy and hyperthermia. Radiother. Oncol. 2019;140:150–158. doi: 10.1016/j.radonc.2019.06.021. PubMed DOI
Kok H.P., Wust P., Stauffer P.R., Bardati F., Van Rhoon G.C., Crezee H. Current state of the art of regional hyperthermia treatment planning: A review. Radiat. Oncol. 2015;10:196. doi: 10.1186/s13014-015-0503-8. PubMed DOI PMC
Sreenivasa G., Gellermann J., Rau B., Nadobny J., Schlag P., Deuflhard P., Felix R., Wust P. Clinical use of the hyperthermia treatment planning system HyperPlan to predict effectiveness and toxicity. Int. J. Radiat. Oncol. 2003;55:407–419. doi: 10.1016/S0360-3016(02)04144-5. PubMed DOI
Bruggmoser G. Some aspects of quality management in deep regional hyperthermia. Int. J. Hyperth. 2012;28:562–569. doi: 10.3109/02656736.2012.714049. PubMed DOI
Kok H.P., Schooneveldt G., Bakker A., De Kroon-Oldenhof R., Straten L.K.-V., De Jong C.E., Steggerda-Carvalho E., Geijsen E.D., A Stalpers L.J., Crezee H. Predictive value of simulated SAR and temperature for changes in measured temperature after phase-amplitude steering during locoregional hyperthermia treatments. Int. J. Hyperth. 2018;35:330–339. doi: 10.1080/02656736.2018.1500720. PubMed DOI
Franckena M., Canters R., Termorshuizen F., Van Der Zee J., Van Rhoon G. Clinical implementation of hyperthermia treatment planning guided steering: A cross over trial to assess its current contribution to treatment quality. Int. J. Hyperth. 2010;26:145–157. doi: 10.3109/02656730903453538. PubMed DOI
Lagendijk J.J.W. Hyperthermia treatment planning. Phys. Med. Biol. 2000;45:R61. doi: 10.1088/0031-9155/45/5/201. PubMed DOI
Kok H.P., Ciampa S., De Kroon-Oldenhof R., Steggerda-Carvalho E.J., Van Stam G., Vörding P.J.Z.V.S., A Stalpers L.J., Geijsen E.D., Bardati F., Bel A., et al. Toward Online Adaptive Hyperthermia Treatment Planning: Correlation Between Measured and Simulated Specific Absorption Rate Changes Caused by Phase Steering in Patients. Int. J. Radiat. Oncol. 2014;90:438–445. doi: 10.1016/j.ijrobp.2014.05.1307. PubMed DOI
De Greef M., Kok H.P., Correia D., Bel A., Crezee H. Optimization in hyperthermia treatment planning: The impact of tissue perfusion uncertainty. Med. Phys. 2010;37:4540–4550. doi: 10.1118/1.3462561. PubMed DOI
Bruggmoser G., Bauchowitz S., Canters R., Crezee H., Ehmann M., Gellermann J., Lamprecht U., Lomax N., Messmer M., Ott O., et al. Guideline for the clinical application, documentation and analysis of clinical studies for regional deep hyperthermia. Strahlenther. Onkol. 2012;188:198–211. doi: 10.1007/s00066-012-0176-2. PubMed DOI
Lagendijk J.J.W., Van Rhoon G.C., Hornsleth S.N., Wust P., De Leeuw A.C.C., Schneider C.J., Van Ddk J.D.P., Van Der Zee J., Van Heek-Romanowski R., Rahman S.A., et al. Esho Quality Assurance Guidelines for Regional Hyperthermia. Int. J. Hyperth. 1998;14:125–133. doi: 10.3109/02656739809018219. PubMed DOI
Trefna H.D., Schmidt M., Van Rhoon G.C., Kok H.P., Gordeev S.S., Lamprecht U., Marder D., Nadobny J., Ghadjar P., Abdel-Rahman S., et al. Quality assurance guidelines for interstitial hyperthermia. Int. J. Hyperth. 2019;36:276–293. doi: 10.1080/02656736.2018.1564155. PubMed DOI
Wust P., Stahl H., Löffel J., Seebass M., Riess H., Felix R. Clinical, physiological and anatomical determinants for radiofrequency hyperthermia. Int. J. Hyperth. 1995;11:151–167. doi: 10.3109/02656739509022453. PubMed DOI
Wust J.N.P. Influence of patient models and numerical methods on predicted power deposition patterns. Int. J. Hyperth. 1999;15:519–540. doi: 10.1080/026567399285512. PubMed DOI
Bellizzi G.G., Sumser K., VilasBoas-Ribeiro I., Curto S., Drizdal T., Van Rhoon G.C., Franckena M., Paulides M.M. Standardization of patient modeling in hyperthermia simulation studies: Introducing the Erasmus Virtual Patient Repository. Int. J. Hyperth. 2020;37:608–616. doi: 10.1080/02656736.2020.1772996. PubMed DOI
Schooneveldt G., Kok H.P., Bakker A., Geijsen E.D., Rasch C.R.N., De La Rosette J.J.M.C.H., Hulshof M.C.C.M., De Reijke T.M., Crezee H. Clinical validation of a novel thermophysical bladder model designed to improve the accuracy of hyperthermia treatment planning in the pelvic region. Int. J. Hyperth. 2018;35:383–397. doi: 10.1080/02656736.2018.1506164. PubMed DOI
Verhaart R.F., Fortunati V., Verduijn G.M., Van Der Lugt A., Van Walsum T., Veenland J.F., Paulides M.M. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: A comparison of CT and CT-MRI based tissue segmentation on simulated temperature. Med Phys. 2014;41:123302. doi: 10.1118/1.4901270. PubMed DOI
Paulides M.M., Stauffer P.R., Neufeld E., Maccarini P.F., Kyriakou A., Canters R.A., Diederich C.J., Bakker J.F., Van Rhoon G.C. Simulation techniques in hyperthermia treatment planning. Int. J. Hyperth. 2013;29:346–357. doi: 10.3109/02656736.2013.790092. PubMed DOI PMC
Canters R.A.M., Paulides M.M., Franckena M.F., Van Der Zee J., Van Rhoon G.C. Implementation of treatment planning in the routine clinical procedure of regional hyperthermia treatment of cervical cancer: An overview and the Rotterdam experience. Int. J. Hyperth. 2012;28:570–581. doi: 10.3109/02656736.2012.675630. PubMed DOI
Canters R.A.M., Wust P., Bakker J., Van Rhoon G. A literature survey on indicators for characterisation and optimisation of SAR distributions in deep hyperthermia, a plea for standardisation. Int. J. Hyperth. 2009;25:593–608. doi: 10.3109/02656730903110539. PubMed DOI
Canters R.A.M., Franckena M., Paulides M.M., Van Rhoon G.C. Patient positioning in deep hyperthermia: Influences of inaccuracies, signal correction possibilities and optimization potential. Phys. Med. Boil. 2009;54:3923–3936. doi: 10.1088/0031-9155/54/12/021. PubMed DOI
Lee H.K., Antell A.G., Perez C.A., Straube W.L., Ramachandran G., Myerson R.J., Emami B., Molmenti E.P., Buckner A., Lockett M.A. Superficial hyperthermia and irradiation for recurrent breast carcinoma of the chest wall: Prognostic factors in 196 tumors. Int. J. Radiat. Oncol. Biol. Phys. 1998;40:365–375. doi: 10.1016/S0360-3016(97)00740-2. PubMed DOI
Paulides M.M., Bakker J.F., Linthorst M., Van Der Zee J., Rijnen Z., Neufeld E., Pattynama P.M.T., Jansen P.P., Levendag P.C., Van Rhoon G.C. The clinical feasibility of deep hyperthermia treatment in the head and neck: New challenges for positioning and temperature measurement. Phys. Med. Boil. 2010;55:2465–2480. doi: 10.1088/0031-9155/55/9/003. PubMed DOI
Van de Kamer J.B., Van Wieringen N., De Leeuw A.A.C., Lagendijk J.J.W. The significance of accurate dielectric tissue data for hyperthermia. Int. J. Hyperth. 2001;17:123–142. doi: 10.1080/02656730150502297. PubMed DOI
Ribeiro I.V., Van Holthe N., Van Rhoon G.C., Paulides M.M. Impact of segmentation detail in hyperthermia treatment planning: Comparison between detailed and clinical tissue segmentation; Proceedings of the EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med); Split, Croatia. 10–13 September 2018.
Hornsleth S.N., Mella O., Dahl O. A new CT segmentation algorithm for finite difference based treatment planning systems. Hyperthermic Oncol. 1996;2:521–523.
Gabriel C., Gabriel S., Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Boil. 1996;41:2231–2249. doi: 10.1088/0031-9155/41/11/001. PubMed DOI
Christ A., Kainz W., Hahn E.G., Honegger K., Zefferer M., Neufeld E., Rascher W., Janka R., Bautz W., Chen J., et al. The Virtual Family—Development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys. Med. Boil. 2009;55:N23–N38. doi: 10.1088/0031-9155/55/2/N01. PubMed DOI
Gosselin M.-C., Neufeld E., Moser H., Huber E., Farcito S., Gerber L., Jedensjö M., Hilber I., Di Gennaro F., Lloyd B., et al. Development of a new generation of high-resolution anatomical models for medical device evaluation: The Virtual Population 3.0. Phys. Med. Boil. 2014;59:5287–5303. doi: 10.1088/0031-9155/59/18/5287. PubMed DOI
Rijnen Z., Bakker J.F., Canters R.A., Togni P., Verduijn G.M., Levendag P.C., Van Rhoon G.C., Paulides M.M. Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck. Int. J. Hyperth. 2013;29:181–193. doi: 10.3109/02656736.2013.783934. PubMed DOI
McIntosh R.L., Anderson V. A Comprehensive Tissue Properties Database Provided for the Thermal Assessment of A Human at Rest. Biophys. Rev. Lett. 2010;5:129–151. doi: 10.1142/S1793048010001184. DOI
Hasgall P.A., Neufeld E., Gosselin M.C., Klingenbck A., Kuster N.K. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues. Version 4.0. May 15, 2018. DOI
Franckena M., Lutgens L.C., Koper P.C., Kleynen C.E., Van Der Steen-Banasik E.M., Jobsen J.J., Leer J.W., Creutzberg C.L., Dielwart M.F., Van Norden Y., et al. Radiotherapy and Hyperthermia for Treatment of Primary Locally Advanced Cervix Cancer: Results in 378 Patients. Int. J. Radiat. Oncol. 2009;73:242–250. doi: 10.1016/j.ijrobp.2008.03.072. PubMed DOI
Rau B., Wust P., Tilly W., Gellermann J., Harder C., Riess H., Budach V., Félix R., Schlag P.M. Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer: Regional radiofrequency hyperthermia correlates with clinical parameters. Int. J. Radiat. Oncol. 2000;48:381–391. doi: 10.1016/S0360-3016(00)00650-7. PubMed DOI
Sreenivasa G., Hildebrandt B., Kümmel S., Jungnickel K., Cho C.H., Tilly W., Böhmer D., Budach V., Felix R., Wust P. Radiochemotherapy combined with regional pelvic hyperthermia induces high response and resectability rates in patients with nonresectable cervical cancer ≥FIGO IIB “bulky”. Int. J. Radiat. Oncol. 2006;66:1159–1167. doi: 10.1016/j.ijrobp.2006.06.052. PubMed DOI
Dinges S., Harder C., Wurm R., Buchali A., Blohmer J., Gellermann J., Wust P., Randow H., Budach V. Combined treatment of inoperable carcinomas of the uterine cervix with radiotherapy and regional hyperthermia. Results of a phase II trial. Strahlenther. Onkol. 1998;174:517–521. doi: 10.1007/BF03038984. PubMed DOI
Tilly W., Gellermann J., Graf R., Hildebrandt B., Weißbach L., Budach V., Felix R., Wust P. Regional hyperthermia in conjunction with definitive radiotherapy against recurrent or locally advanced prostate cancer T3 pNO MO. Strahlenther. Onkol. 2005;181:35–41. doi: 10.1007/s00066-005-1296-8. PubMed DOI
A Yoon M., Hong S.-J., Ku M.C., Kang C.H., Ahn K.-S., Kim B.H. Multiparametric MR Imaging of Age-related Changes in Healthy Thigh Muscles. Radiology. 2018;287:235–246. doi: 10.1148/radiol.2017171316. PubMed DOI
Juang T., Stauffer P.R., Craciunescu O.A., Maccarini P.F., Yuan Y., Das S.K., Dewhirst M.W., Inman B.A., Vujaskovic Z. Thermal dosimetry characteristics of deep regional heating of non-muscle invasive bladder cancer. Int. J. Hyperth. 2014;30:176–183. doi: 10.3109/02656736.2014.898338. PubMed DOI PMC
Zweije R., Kok H.P., Bakker A., Bel A., Crezee J. Technical and Clinical Evaluation of the ALBA-4D 70MHz Loco-Regional Hyperthermia System; Proceedings of the 2018 48th European Microwave Conference (EuMC); Madrid, Spain. 23–27 September 2018; pp. 328–331. DOI
Gellermann J., Wlodarczyk W., Ganter H., Nadobny J., Fähling H., Seebass M., Felix R., Wust P. A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: Validation in a heterogeneous phantom. Int. J. Radiat. Oncol. 2005;61:267–277. doi: 10.1016/j.ijrobp.2004.05.009. PubMed DOI
Curto S., Aklan B., Mulder H.T., Mils O., Schmidt M., Lamprecht U., Peller M., Wessalowski R., Lindner L.H., Fietkau R., et al. Quantitative, Multi-institutional Evaluation of MR Thermometry Accuracy for Deep-Pelvic MR-Hyperthermia Systems Operating in Multi-vendor MR-systems Using a New Anthropomorphic Phantom. Cancers. 2019;11:1709. doi: 10.3390/cancers11111709. PubMed DOI PMC
Bakker J., Paulides M.M., Neufeld E., Christ A., Kuster N., Van Rhoon G.C. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: Theoretical assessment of the induced peak temperature increase. Phys. Med. Boil. 2011;56:4967–4989. doi: 10.1088/0031-9155/56/15/020. PubMed DOI