Environmentally Relevant Concentration of Bisphenol S Shows Slight Effects on SIHUMIx
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
32961728
PubMed Central
PMC7564734
DOI
10.3390/microorganisms8091436
PII: microorganisms8091436
Knihovny.cz E-resources
- Keywords
- bisphenol S, fatty acid methyl ester, in vitro model, intestinal microbiota, metaproteomics, short-chain fatty acids,
- Publication type
- Journal Article MeSH
Bisphenol S (BPS) is an industrial chemical used in the process of polymerization of polycarbonate plastics and epoxy resins and thus can be found in various plastic products and thermal papers. The microbiota disrupting effect of BPS on the community structure of the microbiome has already been reported, but little is known on how BPS affects bacterial activity and function. To analyze these effects, we cultivated the simplified human intestinal microbiota (SIHUMIx) in bioreactors at a concentration of 45 µM BPS. By determining biomass, growth of SIHUMIx was followed but no differences during BPS exposure were observed. To validate if the membrane composition was affected, fatty acid methyl esters (FAMEs) profiles were compared. Changes in the individual membrane fatty acid composition could not been described; however, the saturation level of the membranes slightly increased during BPS exposure. By applying targeted metabolomics to quantify short-chain fatty acids (SCFA), it was shown that the activity of SIHUMIx was unaffected. Metaproteomics revealed temporal effect on the community structure and function, showing that BPS has minor effects on the structure or functionality of SIHUMIx.
See more in PubMed
Pjanic M. The role of polycarbonate monomer bisphenol-A in insulin resistance. PeerJ. 2017;5:e3809. doi: 10.7717/peerj.3809. PubMed DOI PMC
Arnold S.M., Clark K.E., Staples C.A., Klecka G.M., Dimond S.S., Caspers N., Hentges S.G. Relevance of drinking water as a source of human exposure to bisphenol A. J. Expo. Sci. Environ. Epidemiol. 2013;23:137–144. doi: 10.1038/jes.2012.66. PubMed DOI PMC
Rochester J.R., Bolden A.L. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ. Health Perspect. 2015;123:643–650. doi: 10.1289/ehp.1408989. PubMed DOI PMC
Cano-Nicolau J., Vaillant C., Pellegrini E., Charlier T.D., Kah O., Coumailleau P. Estrogenic Effects of Several BPA Analogs in the Developing Zebrafish Brain. Front. Neurosci. 2016;10:112. doi: 10.3389/fnins.2016.00112. PubMed DOI PMC
ECHA . Inclusion of Substances of Very High Concern in the Candidate List for Eventual Inclusion in Annex XIV. Europeen Chemicals Agency; Helsinki, Finland: 2018.
Pal S., Sarkar K., Nath P.P., Mondal M., Khatun A., Paul G. Bisphenol S impairs blood functions and induces cardiovascular risks in rats. Toxicol. Rep. 2017;4:560–565. doi: 10.1016/j.toxrep.2017.10.006. PubMed DOI PMC
CHCC [(accessed on 5 December 2017)];Chemicals of High Concern to Children (CHCC) Reporting List. Available online: http://portal.mts-global.com/en/technical_update/CPIE-026-17.html.
Qiu W., Yang M., Liu S., Lei P., Hu L., Chen B., Wu M., Wang K.J. Toxic Effects of Bisphenol S Showing Immunomodulation in Fish Macrophages. Environ. Sci. Technol. 2018;52:831–838. doi: 10.1021/acs.est.7b04226. PubMed DOI
Tzatzarakis M.N., Vakonaki E., Kavvalakis M.P., Barmpas M., Kokkinakis E.N., Xenos K., Tsatsakis A.M. Biomonitoring of bisphenol A in hair of Greek population. Chemosphere. 2015;118:336–341. doi: 10.1016/j.chemosphere.2014.10.044. PubMed DOI
Gonzalez N., Cunha S.C., Monteiro C., Fernandes J.O., Marques M., Domingo J.L., Nadal M. Quantification of eight bisphenol analogues in blood and urine samples of workers in a hazardous waste incinerator. Environ. Res. 2019;176:108576. doi: 10.1016/j.envres.2019.108576. PubMed DOI
Jin H.B., Xie J.H., Mao L.L., Zhao M.R., Bai X.X., Wen J., Shen T., Wu P.F. Bisphenol analogue concentrations in human breast milk and their associations with postnatal infant growth. Environ. Pollut. 2020;259 doi: 10.1016/j.envpol.2019.113779. PubMed DOI
Liu M., Jia S., Dong T., Han Y., Xue J., Wanjaya E.R., Fang M. The occurrence of bisphenol plasticizers in paired dust and urine samples and its association with oxidative stress. Chemosphere. 2019;216:472–478. doi: 10.1016/j.chemosphere.2018.10.090. PubMed DOI
Kinross J.M., Darzi A.W., Nicholson J.K. Gut microbiome-host interactions in health and disease. Genome Med. 2011;3:14. doi: 10.1186/gm228. PubMed DOI PMC
Koppel N., Maini Rekdal V., Balskus E.P. Chemical transformation of xenobiotics by the human gut microbiota. Science. 2017;356 doi: 10.1126/science.aag2770. PubMed DOI PMC
Claus S.P., Guillou H., Ellero-Simatos S. The gut microbiota: A major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes. 2016;2:16003. doi: 10.1038/npjbiofilms.2016.3. PubMed DOI PMC
Spanogiannopoulos P., Bess E.N., Carmody R.N., Turnbaugh P.J. The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 2016;14:273–287. doi: 10.1038/nrmicro.2016.17. PubMed DOI PMC
Zhang W., Yin K., Chen L. Bacteria-mediated bisphenol A degradation. Appl. Microbiol. Biotechnol. 2013;97:5681–5689. doi: 10.1007/s00253-013-4949-z. PubMed DOI
Danzl E., Sei K., Soda S., Ike M., Fujita M. Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater. Int. J. Environ. Res. Public Health. 2009;6:1472–1484. doi: 10.3390/ijerph6041472. PubMed DOI PMC
Heipieper H.J., Weber F.J., Sikkema J., Keweloh H., de Bont J.A.M. Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 1994;12:409–415. doi: 10.1016/0167-7799(94)90029-9. DOI
Hąc-Wydro K., Połeć K., Broniatowski M. The comparative analysis of the effect of environmental toxicants: Bisphenol A, S and F on model plant, fungi and bacteria membranes. The studies on multicomponent systems. J. Mol. Liq. 2019;289:111136. doi: 10.1016/j.molliq.2019.111136. DOI
Lai K.P., Chung Y.T., Li R., Wan H.T., Wong C.K. Bisphenol A alters gut microbiome: Comparative metagenomics analysis. Environ. Pollut. 2016;218:923–930. doi: 10.1016/j.envpol.2016.08.039. PubMed DOI
Catron T.R., Keely S.P., Brinkman N.E., Zurlinden T.J., Wood C.E., Wright J.R., Phelps D., Wheaton E., Kvasnicka A., Gaballah S., et al. Host Developmental Toxicity of BPA and BPA Alternatives Is Inversely Related to Microbiota Disruption in Zebrafish. Toxicol. Sci. 2019;167:468–483. doi: 10.1093/toxsci/kfy261. PubMed DOI
Krause J.L., Schaepe S.S., Fritz-Wallace K., Engelmann B., Rolle-Kampczyk U., Kleinsteuber S., Schattenberg F., Liu Z., Mueller S., Jehmlich N., et al. Following the community development of SIHUMIx—A new intestinal in vitro model for bioreactor use. Gut Microbes. 2019 doi: 10.1080/19490976.2019.1702431. PubMed DOI PMC
Schäpe S.S., Krause J.L., Engelmann B., Fritz-Wallace K., Schattenberg F., Liu Z., Müller S., Jehmlich N., Rolle-Kampczyk U., Herberth G., et al. The Simplified Human Intestinal Microbiota (SIHUMIx) Shows High Structural and Functional Resistance against Changing Transit Times in In Vitro Bioreactors. Microorganisms. 2019;7:641. doi: 10.3390/microorganisms7120641. PubMed DOI PMC
Becker N., Kunath J., Loh G., Blaut M. Human intestinal microbiota: Characterization of a simplified and stable gnotobiotic rat model. Gut Microbes. 2011;2:25–33. doi: 10.4161/gmic.2.1.14651. PubMed DOI
Wissenbach D.K., Oliphant K., Rolle-Kampczyk U., Yen S., Hoke H., Baumann S., Haange S.B., Verdu E.F., Allen-Vercoe E., von Bergen M. Optimization of metabolomics of defined in vitro gut microbial ecosystems. Int. J. Med. Microbiol. 2016;306:280–289. doi: 10.1016/j.ijmm.2016.03.007. PubMed DOI
Han J., Lin K., Sequeira C., Borchers C.H. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta. 2015;854:86–94. doi: 10.1016/j.aca.2014.11.015. PubMed DOI
Starke R., Jehmlich N., Alfaro T., Dohnalkova A., Capek P., Bell S.L., Hofmockel K.S. Incomplete cell disruption of resistant microbes. Sci. Rep. 2019;9:5618. doi: 10.1038/s41598-019-42188-9. PubMed DOI PMC
Hughes C.S., Foehr S., Garfield D.A., Furlong E.E., Steinmetz L.M., Krijgsveld J. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 2014;10:757. doi: 10.15252/msb.20145625. PubMed DOI PMC
Haange S.B., Jehmlich N., Hoffmann M., Weber K., Lehmann J., von Bergen M., Slanina U. Disease Development Is Accompanied by Changes in Bacterial Protein Abundance and Functions in a Refined Model of Dextran Sulfate Sodium (DSS)-Induced Colitis. J. Proteome Res. 2019;18:1774–1786. doi: 10.1021/acs.jproteome.8b00974. PubMed DOI
Käll L., Canterbury J.D., Weston J., Noble W.S., MacCoss M.J. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods. 2007;4:923–925. doi: 10.1038/nmeth1113. PubMed DOI
Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–D462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC
Kanehisa M., Sato Y., Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016;428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI
Goeminne L.J., Gevaert K., Clement L. Peptide-level Robust Ridge Regression Improves Estimation, Sensitivity, and Specificity in Data-dependent Quantitative Label-free Shotgun Proteomics. Mol. Cell Proteom. 2016;15:657–668. doi: 10.1074/mcp.M115.055897. PubMed DOI PMC
Goeminne L.J.E., Gevaert K., Clement L. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob. J. Proteom. 2018;171:23–36. doi: 10.1016/j.jprot.2017.04.004. PubMed DOI
Bligh E.G., Dyer W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Phys. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI
Morrison W.R., Smith L.M. Preparation of Fatty Acid Methyl Esters + Dimethylacetals from Lipids with Boron Fluoride-Methanol. J. Lipid. Res. 1964;5:600–608. PubMed
Heipieper H.J., de Bont J.A. Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl. Environ. Microbiol. 1994;60:4440–4444. doi: 10.1128/AEM.60.12.4440-4444.1994. PubMed DOI PMC
Unell M., Kabelitz N., Jansson J.K., Heipieper H.J. Adaptation of the psychrotrophArthrobacter chlorophenolicusA6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol. Lett. 2007;266:138–143. doi: 10.1111/j.1574-6968.2006.00502.x. PubMed DOI
Kleiner M., Thorson E., Sharp C.E., Dong X., Liu D., Li C., Strous M. Assessing species biomass contributions in microbial communities via metaproteomics. Nat. Commun. 2017;8:1558. doi: 10.1038/s41467-017-01544-x. PubMed DOI PMC
Horan T.S., Pulcastro H., Lawson C., Gerona R., Martin S., Gieske M.C., Sartain C.V., Hunt P.A. Replacement Bisphenols Adversely Affect Mouse Gametogenesis with Consequences for Subsequent Generations. Curr. Biol. 2018;28:2948–2954 e2943. doi: 10.1016/j.cub.2018.06.070. PubMed DOI PMC
Eladak S., Grisin T., Moison D., Guerquin M.J., N’Tumba-Byn T., Pozzi-Gaudin S., Benachi A., Livera G., Rouiller-Fabre V., Habert R. A new chapter in the bisphenol A story: Bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil. Steril. 2015;103:11–21. doi: 10.1016/j.fertnstert.2014.11.005. PubMed DOI
Liao C., Kannan K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. J. Agric. Food Chem. 2013;61:4655–4662. doi: 10.1021/jf400445n. PubMed DOI
Vijayalakshmi V., Senthilkumar P., Mophin-Kani K., Sivamani S., Sivarajasekar N., Vasantharaj S. Bio-degradation of Bisphenol A by Pseudomonas aeruginosa PAb1 isolated from effluent of thermal paper industry: Kinetic modeling and process optimization. J. Radiat. Res. Appl. Sci. 2019;11:56–65. doi: 10.1016/j.jrras.2017.08.003. DOI
Hamer H.M., Jonkers D., Venema K., Vanhoutvin S., Troost F.J., Brummer R.J. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 2008;27:104–119. doi: 10.1111/j.1365-2036.2007.03562.x. PubMed DOI
Nyangale E.P., Mottram D.S., Gibson G.R. Gut microbial activity, implications for health and disease: The potential role of metabolite analysis. J. Proteome Res. 2012;11:5573–5585. doi: 10.1021/pr300637d. PubMed DOI
Reddivari L., Veeramachaneni D.N.R., Walters W.A., Lozupone C., Palmer J., Hewage M.K.K., Bhatnagar R., Amir A., Kennett M.J., Knight R., et al. Perinatal Bisphenol A Exposure Induces Chronic Inflammation in Rabbit Offspring via Modulation of Gut Bacteria and Their Metabolites. mSystems. 2017;2 doi: 10.1128/mSystems.00093-17. PubMed DOI PMC
Parsons J.B., Rock C.O. Bacterial lipids: Metabolism and membrane homeostasis. Prog. Lipid. Res. 2013;52:249–276. doi: 10.1016/j.plipres.2013.02.002. PubMed DOI PMC
Bakir M.A., Kitahara M., Sakamoto M., Matsumoto M., Benno Y. Bacteroides finegoldii sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 2006;56:931–935. doi: 10.1099/ijs.0.64084-0. PubMed DOI
Sakamoto M., Ohkuma M. Bacteroides reticulotermitis sp. nov., isolated from the gut of a subterranean termite (Reticulitermes speratus) Int. J. Syst. Evol. Microbiol. 2013;63:691–695. doi: 10.1099/ijs.0.040931-0. PubMed DOI
Paek J., Shin Y., Kook J.K., Chang Y.H. Blautia argi sp. nov., a new anaerobic bacterium isolated from dog faeces. Int. J. Syst. Evol. Micr. 2019;69:33–38. doi: 10.1099/ijsem.0.002981. PubMed DOI
Park S.K., Kim M.S., Roh S.W., Bae J.W. Blautia stercoris sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 2012;62:776–779. doi: 10.1099/ijs.0.031625-0. PubMed DOI
Haack S.K., Garchow H., Odelson D.A., Forney L.J., Klug M.J. Accuracy, Reproducibility, and Interpretation of Fatty-Acid Methyl-Ester Profiles of Model Bacterial Communities. Appl. Environ. Microb. 1994;60:2483–2493. doi: 10.1128/AEM.60.7.2483-2493.1994. PubMed DOI PMC
Murinova S., Dercova K. Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. Int. J. Microbiol. 2014;2014:873081. doi: 10.1155/2014/873081. PubMed DOI PMC
Grogan D.W., Cronan J.E. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 1997;61:429–441. doi: 10.1128/.61.4.429-441.1997. PubMed DOI PMC
Heipieper H.J., Fischer J. Bacterial Solvent Responses and Tolerance: Cis–Trans Isomerization. In: Timmis K.N., editor. Handbook of Hydrocarbon and Lipid Microbiology. Springer; Berlin/Heidelberg, Germany: 2010. pp. 4203–4211. DOI
Oh H.Y., Lee J.O., Kim O.B. Increase of organic solvent tolerance of Escherichia coli by the deletion of two regulator genes, fadR and marR. Appl. Microbiol. Biotechnol. 2012;96:1619–1627. doi: 10.1007/s00253-012-4463-8. PubMed DOI PMC
Ramos J.L., Duque E., Gallegos M.T., Godoy P., Ramos-Gonzalez M.I., Rojas A., Teran W., Segura A. Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol. 2002;56:743–768. doi: 10.1146/annurev.micro.56.012302.161038. PubMed DOI
Dyrda G., Boniewska-Bernacka E., Man D., Barchiewicz K., Slota R. The effect of organic solvents on selected microorganisms and model liposome membrane. Mol. Biol. Rep. 2019;46:3225–3232. doi: 10.1007/s11033-019-04782-y. PubMed DOI
Gordeliy V.I., Kiselev M.A., Lesieur P., Pole A.V., Teixeira J. Lipid membrane structure and interactions in dimethyl sulfoxide/water mixtures. Biophys. J. 1998;75:2343–2351. doi: 10.1016/S0006-3495(98)77678-7. PubMed DOI PMC
Chang C.Y., Simon E. The effect of dimethyl sulfoxide (DMSO) on cellular systems. Proc. Soc. Exp. Biol. Med. 1968;128:60–66. doi: 10.3181/00379727-128-32943. PubMed DOI
Eberlein C., Baumgarten T., Starke S., Heipieper H.J. Immediate response mechanisms of Gram-negative solvent-tolerant bacteria to cope with environmental stress: Cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secretion. Appl. Microbiol. Biotechnol. 2018;102:2583–2593. doi: 10.1007/s00253-018-8832-9. PubMed DOI PMC
Zhang G., Meredith T.C., Kahne D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr. Opin. Microbiol. 2013;16:779–785. doi: 10.1016/j.mib.2013.09.007. PubMed DOI PMC
Lazarevic V., Karamata D. The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol. Microbiol. 1995;16:345–355. doi: 10.1111/j.1365-2958.1995.tb02306.x. PubMed DOI
Schirner K., Marles-Wright J., Lewis R.J., Errington J. Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. EMBO J. 2009;28:830–842. doi: 10.1038/emboj.2009.25. PubMed DOI PMC
Neuhaus F.C., Baddiley J. A continuum of anionic charge: Structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 2003;67:686–723. doi: 10.1128/MMBR.67.4.686-723.2003. PubMed DOI PMC
Vergara-Irigaray M., Maira-Litran T., Merino N., Pier G.B., Penades J.R., Lasa I. Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface. Microbiology. 2008;154:865–877. doi: 10.1099/mic.0.2007/013292-0. PubMed DOI PMC
Paulsen I.T., Beness A.M., Saier M.H., Jr. Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. Microbiology. 1997;143 Pt 8:2685–2699. doi: 10.1099/00221287-143-8-2685. PubMed DOI
Klein G., Raina S. Regulated Assembly of LPS, Its Structural Alterations and Cellular Response to LPS Defects. Int. J. Mol. Sci. 2019;20:356. doi: 10.3390/ijms20020356. PubMed DOI PMC