Concentrations of selected trace elements in surface soils near crossroads in the city of Bratislava (the Slovak Republic)

. 2021 Feb ; 28 (5) : 5455-5471. [epub] 20200923

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32965643

Grantová podpora
APVV-17-0317 Agentúra na Podporu Výskumu a Vývoja
VEGA 1/0341/19 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
GAČR19-18513S Grantová Agentura České Republiky
UNCE/SCI/006 Center for Geosphere Dynamics

Odkazy

PubMed 32965643
DOI 10.1007/s11356-020-10822-z
PII: 10.1007/s11356-020-10822-z
Knihovny.cz E-zdroje

It is well known that road transport emits various trace elements into the environment, which are deposited in soils in the vicinity of roads, so-called roadside soils, and thus contributes to the deterioration of their chemical state. The aim of this work was to determine concentrations of some metals and metalloids (arsenic (As), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), vanadium (V), and zinc (Zn)) in soils from crossroads with traffic signals, which are characterized by deceleration of vehicles and increased emissions of elements related mainly to brake and tyre wear. The results confirmed a moderate enrichment of soils with Cu, Pb, and Zn (enrichment factor (EF) values > 2) and significant enrichment for Sb (EF > 5), while the other elements showed no or minimal enrichment. The age of crossroads proved to have a positive influence on the accumulation of some elements in soils with the largest differences for Cu, Fe, Pb, Sb, and Zn (p < 0.001). Traffic volumes expressed as the average daily traffic intensity (ADTI) also positively influenced soil concentrations of Cr, Cu, Pb, Sb, and Zn, while distance to the crossroad had a significant negative effect on the soil concentration of Cu, Sb, and Zn (p < 0.001). The stable isotopic ratios of Pb, 206Pb/207Pb and 208Pb/206Pb, ranging from 1.1414 to 1.2046 and from 2.0375 to 2.1246, respectively, pointed to the mixed natural-anthropic origin of Pb in the soils of crossroads with a visible contribution of traffic-related sources. Based on the above findings combined with covariance among the studied elements using statistical methods applied to compositionally transformed data, it was possible to show that Cu, Pb, Sb, and Zn clearly originated from road traffic.

Zobrazit více v PubMed

ACEA (2019) Report: Vehicles in use – Europe 2019. European Automobile Manufacturers Association. https://www.acea.be/publications/article/report-vehicles-in-use-europe-2019 . Accessed 3 April 2020

Adamiec E, Jarosz-Krzemińska E, Wieszała R (2016) Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ Monit Assess 188(6):369. https://doi.org/10.1007/s10661-016-5377-1 DOI

Aitchison J, Greenacre M (2002) Biplots of compositional data. J R Stat Soc: Ser C: Appl Stat 51(4):375–392. https://doi.org/10.1111/1467-9876.00275 DOI

Akbar KF, Hale WHG, Headley AD, Athar M (2006) Heavy metal contamination of roadside soils of Northern England. Soil Water Res 1(4):158–163. https://doi.org/10.17221/6517-SWR DOI

Al-Chalabi AS, Hawker D (2000) Distribution of vehicular lead in roadside soils of major roads of Brisbane, Australia. Water Air Soil Pollut 118(3-4):299–310. https://doi.org/10.1023/A:1005107808235

Alsbou EME, Al-Khashman OA (2018) Heavy metal concentrations in roadside soil and street dust from Petra region, Jordan. Environ Monit Assess 190:48. https://doi.org/10.1007/s10661-017-6409-1 DOI

Arslan H, Gizir AM (2006) Heavy-metal content of roadside soil in Mersin, Turkey. Fresenius Environ Bull 15(1):16–22

Aslam J, Khan SA, Khan SH (2013) Heavy metals contamination in roadside soil near different traffic signals in Dubai, United Arab Emirates. J Saudi Chem Soc 17(3):315–319. https://doi.org/10.1016/j.jscs.2011.04.015 DOI

Bäckström M, Karlsson S, Allard B (2004) Metal leachability and anthropogenic signal in roadside soils estimated from sequential extraction and stable lead isotopes. Environ Monit Assess 90(1-3):135–160. https://doi.org/10.1023/B:EMAS.0000003572.40515.31 DOI

Birke M, Rauch U, Stummeyer J, Lorenz H, Keilert B (2018) A review of platinum group element (PGE) geochemistry and a study of the changes of PGE contents in the topsoil of Berlin, Germany, between 1992 and 2013. J Geochem Explor 187:72–96. https://doi.org/10.1016/j.gexplo.2017.09.005 DOI

Cal-Prieto MJ, Carlosena A, Andrade JM, Martínez ML, Muniategui S, López-Mahía P, Prada D (2001) Antimony as a tracer of the anthropogenic influence on soils and estuarine sediments. Water Air Soil Pollut 129(1-4):333–348. https://doi.org/10.1023/A:1010360518054 DOI

Canteras FB, Oliveira BFF, Moreira S (2019) Topsoil pollution in highway medians in the State of São Paulo (Brazil): determination of potentially toxic elements using synchrotron radiation total reflection X-ray fluorescence. Environ Sci Pollut Res 26(20):20839–20852. https://doi.org/10.1007/s11356-019-05425-2 DOI

Carlosena A, Andrade JM, Prada D (1998) Searching for heavy metals grouping roadside soils as a function of motorized traffic influence. Talanta 47(3):753–767. https://doi.org/10.1016/S0039-9140(98)00117-9 DOI

Chen X, Xia X, Zhao Y, Zhang P (2010) Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J Hazard Mater 181(1–3):640–646. https://doi.org/10.1016/j.jhazmat.2010.05.060 DOI

Christoforidis A, Stamatis N (2009) Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 151(3-4):257–263. https://doi.org/10.1016/j.geoderma.2009.04.016 DOI

Ciazela J, Siepak M (2016) Environmental factors affecting soil metals near outlet roads in Poznań, Poland: impact of grain size, soil depth, and wind dispersal. Environ Monit Assess 188:323. https://doi.org/10.1007/s10661-016-5284-5 DOI

Cicchella D, Zuzolo D, Albanese S, Fedele L, Di Tota I, Guagliardi I, Thiombane M, De Vivo B, Lima A (2020) Urban soil contamination in Salerno (Italy): concentrations and patterns of major, minor, trace and ultra-trace elements in soils. J Geochem Explor 213:106519. https://doi.org/10.1016/j.gexplo.2020.106519 DOI

Conkova M, Kubiznakova J (2008) Lead isotope ratios in tree bark pockets: an indicator of past air pollution in the Czech Republic. Sci Total Environ 404(2-3):440–445. https://doi.org/10.1016/j.scitotenv.2008.04.025 DOI

Councell TB, Duckenfield KU, Landa ER, Callender E (2004) Tire-wear particles as a source of zinc to the environment. Environ Sci Technol 38(15):4206–4214. https://doi.org/10.1021/es034631f DOI

Ćwiąkała M, Korzeniowska J, Kraszewski C, Rafalski L (2019) Testing the concentration of trace metals in soils near roads with varied traffic intensity. Roads and Bridges - Drogi i Mosty 18(2):127–134. https://doi.org/10.7409/rabdim.019.008

Dao L, Morrison L, Zhang H, Zhang C (2014) Influences of traffic on Pb, Cu and Zn concentrations in roadside soils of an urban park in Dublin, Ireland. Environ Geochem Health 36(3):333–343. https://doi.org/10.1007/s10653-013-9553-8 DOI

De Silva S, Ball AS, Huynh T, Reichman SM (2016) Metal accumulation in roadside soil in Melbourne, Australia: effect of road age, traffic density and vehicular speed. Environ Pollut 208:102–109. https://doi.org/10.1016/j.envpol.2015.09.032 DOI

Dong S, Gonzalez RO, Harrison RM, Green D, North R, Fowler G, Weiss D (2017) Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM DOI

Dousova B, Lhotka M, Buzek F, Cejkova B, Jackova I, Bednar V, Hajek P (2020) Environmental interaction of antimony and arsenic near busy traffic nodes. Sci Total Environ 702:134642. https://doi.org/10.1016/j.scitotenv.2019.134642 DOI

Ettler V, Mihaljevič M, Komárek M (2004) ICP-MS measurements of lead isotopic ratios in soils heavily contaminated by lead smelting: tracing the sources of pollution. Anal Bioanal Chem 378(2):311–317. https://doi.org/10.1007/s00216-003-2229-y DOI

Fakayode SO, Olu-Owolabi BI (2003) Heavy metal contamination of roadside topsoil in Osogbo, Nigeria: its relationship to traffic density and proximity to highways. Environ Geol 44(2):150–157. https://doi.org/10.1007/s00254-002-0739-0 DOI

Földi C, Sauermann S, Dohrmann R, Mansfeldt T (2018) Traffic-related distribution of antimony in roadside soils. Environ Pollut 237:704–712. https://doi.org/10.1016/j.envpol.2017.10.112 DOI

Francová A, Chrastný V, Šillerová H, Vítková M, Kocourková J, Komárek M (2017) Evaluating the suitability of different environmental samples for tracing atmospheric pollution in industrial areas. Environ Pollut 220:286–297. https://doi.org/10.1016/j.envpol.2016.09.062 DOI

Garcia R, Millán E (1998) Assessment of Cd, Pb and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain). Chemosphere 37(8):1615–1625. https://doi.org/10.1016/S0045-6535(98)00152-0 DOI

Grigoratos T, Martini G (2014) Non-exhaust traffic related emissions. Brake and tyre wear PM. JRC Science and Policy Reports, Publications Office of the European Union, Luxembourg. https://doi.org/10.2790/21481

Grigoratos T, Martini G (2015) Brake wear particle emissions: a review. Environ Sci Pollut Res 22(4):2491–2504. https://doi.org/10.1007/s11356-014-3696-8 DOI

Hansmann W, Köppel V (2000) Lead-isotopes as tracers of pollutants in soils. Chem Geol 171(1-2):123–144. https://doi.org/10.1016/S0009-2541(00)00230-8 DOI

Hiller E, Mihaljevič M, Filová L, Lachká L, Jurkovič Ľ, Kulikova T, Fajčíková K, Šimurková M, Tatarková V (2017) Occurrence of selected trace metals and their oral bioaccessibility in urban soils of kindergartens and parks in Bratislava (Slovak Republic) as evaluated by simple in vitro digestion procedure. Ecotoxicol Environ Saf 144:611–621. https://doi.org/10.1016/j.ecoenv.2017.06.040 DOI

Hjortenkrans D, Bergbäck B, Häggerud A (2006) New metal emission patterns in road traffic environments. Environ Monit Assess 117(1-3):85–98. https://doi.org/10.1007/s10661-006-7706-2 DOI

Hjortenkrans DST, Bergbäck BG, Häggerud AV (2007) Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environ Sci Technol 41(15):5224–5230. https://doi.org/10.1021/es070198o DOI

Hosseini NS, Sobhanardakani S, Cheraghi M, Lorestani B, Merrikhpour H (2020) Heavy metal concentrations in roadside plants (Achillea wilhelmsii and Cardaria draba) and soils along some highways in Hamedan, west of Iran. Environ Sci Pollut Res 27:13301–13314. https://doi.org/10.1007/s11356-020-07874-6 DOI

Jankaitė A, Baltrėnas P, Kazlauskienė A (2008) Heavy metal concentrations in roadside soils of Lithuania’s highways. Geologija 50(4):237–245. https://doi.org/10.2478/v10056-008-0049-7 DOI

Jaradat QM, Momani KA (1999) Contamination of roadside soil, plants, and air with heavy metals in Jordan, a comparative study. Turk J Chem 23(2):209–220

Kelepertzis E, Komárek M, Argyraki A, Šillerová H (2016) Metal(loid) distribution and Pb isotopic signatures in the urban environment of Athens, Greece. Environ Pollut 213:420–431. https://doi.org/10.1016/j.envpol.2016.02.049 DOI

Kilbride C, Poole J, Hutchings TR (2006) A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP–OES and ex situ field portable X-ray fluorescence analyses. Environ Pollut 143(1):16–23. https://doi.org/10.1016/j.envpol.2005.11.013 DOI

Kim SJ, Park MK, Lee SE, Go HJ, Cho BC, Lee YS, Choi SD (2019) Impact of traffic volumes on levels, patterns, and toxicity of polycyclic aromatic hydrocarbons in roadside soils. Environ Sci Process Impacts 21:174–182. https://doi.org/10.1039/C8EM00532J DOI

Kluge B, Wessolek G (2012) Heavy metal pattern and solute concentration in soils along the oldest highway of the world – the AVUS Autobahn. Environ Monit Assess 184(11):6469–6481. https://doi.org/10.1007/s10661-011-2433-8 DOI

Komárek M, Ettler V, Chrastný V, Mihaljevič M (2008) Lead isotopes in environmental sciences: a review. Environ Int 34(4):562–577. https://doi.org/10.1016/j.envint.2007.10.005 DOI

Kowalska JB, Mazurek R, Gąsiorek M, Zaleski T (2018) Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination – a review. Environ Geochem Health 40(6):2395–2420. https://doi.org/10.1007/s10653-018-0106-z DOI

Kynčlová P, Hron K, Filzmoser P (2017) Correlation between compositional parts based on symmetric balances. Math Geosci 49(6):777–796. https://doi.org/10.1007/s11004-016-9669-3 DOI

Lagerwerff JV, Specht AW (1970) Contamination of roadside soil and vegetation with cadmium, nickel, lead, and zinc. Environ Sci Technol 4(7):583–586. https://doi.org/10.1021/es60042a001 DOI

MacKinnon G, MacKenzie AB, Cook GT, Pulford ID, Duncan HJ, Scott EM (2011) Spatial and temporal variations in Pb concentrations and isotopic composition in road dust, farmland soil and vegetation in proximity to roads since cessation of use of leaded petrol in the UK. Sci Total Environ 409(23):5010–5019. https://doi.org/10.1016/j.scitotenv.2011.08.010 DOI

Maeaba W, Prasad S, Chandra S (2019) First assessment of metals contamination in road dust and roadside soil of Suva City, Fiji. Arch Environ Contam Toxicol 77:249–262. https://doi.org/10.1007/s00244-019-00635-8 DOI

Malkoc S, Yazıcı B, Koparal S (2010) Assessment of the levels of heavy metal pollution in roadside soils of Eskisehir, Turkey. Environ Toxicol Chem 29(12):2720–2725. https://doi.org/10.1002/etc.354 DOI

Mihaljevič M, Ettler V, Strnad L, Šebek O, Vonásek F, Drahota P, Rohovec J (2009) Isotopic composition of lead in Czech coals. Int J Coal Geol 78(1):38–46. https://doi.org/10.1016/j.coal.2008.09.018 DOI

Mihaljevič M, Ettler V, Šebek O, Sracek O, Kříbek B, Kyncl T, Majer V, Veselovský F (2011) Lead isotopic and metallic pollution record in tree rings from the Copperbelt mining-smelting area, Zambia. Water Air Soil Pollut 216(1-4):657–668. https://doi.org/10.1007/s11270-010-0560-4 DOI

Mihaljevič M, Baieta R, Ettler V, Vaněk A, Kříbek B, Penížek V, Drahota P, Trubač J, Sracek O, Chrastný V, Mapani BS (2019) Tracing the metal dynamics in semi-arid soils near mine tailings using stable Cu and Pb isotopes. Chem Geol 515:61–76. https://doi.org/10.1016/j.chemgeo.2019.03.026 DOI

Modlingerová V, Száková J, Sysalová J, Tlustoš P (2012) The effect of intensive traffic on soil and vegetation risk element contents as affected by the distance from a highway. Plant Soil Environ 58(8):379–384. https://doi.org/10.17221/309/2012-PSE DOI

Monna F, Lancelot J, Croudace IW, Cundy AB, Lewis JT (1997) Pb isotopic composition of airborne particulate material from France and the southern United Kingdom: implications for Pb pollution sources in urban areas. Environ Sci Technol 31(8):2277–2286. https://doi.org/10.1021/es960870 DOI

Nabulo G, Oryem-Origa H, Diamond M (2006) Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environ Res 101(1):42–52. https://doi.org/10.1016/j.envres.2005.12.016 DOI

Novák M, Emmanuel S, Vile MA, Erel Y, Véron A, Pačes T, Wieder RK, Vaněček M, Štěpánová M, Břízová E, Hovorka J (2003) Origin of lead in eight Central European peat bogs determined from isotope ratios, strengths, and operation times of regional pollution sources. Environ Sci Technol 37(3):437–445. https://doi.org/10.1021/es0200387 DOI

Olajire AA, Ayodele ET (1997) Contamination of roadside soil and grass with heavy metals. Environ Int 23(1):91–101. https://doi.org/10.1016/S0160-4120(96)00080-3 DOI

Padoan E, Romè C, Ajmone-Marsan F (2017) Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Sci Total Environ 601-602:89–98. https://doi.org/10.1016/j.scitotenv.2017.05.180 DOI

Parsons C, Grabulosa EM, Pili E, Floor GH, Roman-Ross G, Charlet L (2013) Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions. J Hazard Mater 262:1213–1222. https://doi.org/10.1016/j.jhazmat.2012.07.001 DOI

Pawlowsky-Glahn V, Buccianti A (eds) (2011) Compositional data analysis: theory and applications. John Wiley & Sons, Ltd., West Sussex

Plesničar A, Zupančič N (2005) Heavy metal contamination of roadside soil along Ljubljana – Obrežje highway. RMZ-Mater Geoenviron 52(2):403–418

Preciado HF, Li LY, Weis D (2007) Investigation of past and present multi-metal input along two highways of British Columbia, Canada, using lead isotopic signatures. Water Air Soil Pollut 184(1-4):127–139. https://doi.org/10.1007/s11270-007-9402-4 DOI

Pulles T, van der Gon HD, Appelman W, Verheul M (2012) Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmos Environ 61:641–651. https://doi.org/10.1016/j.atmosenv.2012.07.022 DOI

Reimann C, Flem B, Fabian K, Birke M, Ladenberger A, Négreld P, Demetriades A, Hoogewerff J, The GEMAS Project Team (2014) Lead and lead isotopes in agricultural soils of Europe – the continental perspective. Appl Geochem 27(3):532–542. https://doi.org/10.1016/j.apgeochem.2011.12.012 DOI

Reimann C, Filzmoser P, Hron K, Kynčlová P, Garrett RG (2017) A new method for correlation analysis of compositional (environmental) data – a worked example. Sci Total Environ 607-608:965–971. https://doi.org/10.1016/j.scitotenv.2017.06.063 DOI

Reis APM, Shepherd T, Nowell G, Cachada A, Duarte AC, Cave M, Wragg J, Patinha C, Dias A, Rocha F, da Silva EF, Sousa AJ, Prazeres C, Batista MJ (2016) Source and pathway analysis of lead and polycyclic aromatic hydrocarbons in Lisbon urban soils. Sci Total Environ 573:324–336. https://doi.org/10.1016/j.scitotenv.2016.08.119 DOI

Renberg I, Bindler R, Brännvall ML (2001) Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe. Holocene 11(5):511–516. https://doi.org/10.1191/095968301680223468 DOI

Rodrigue JP (2020) The geography of transport systems, 5th edn. Routledge, New York DOI

Roper WR, Robarge WP, Osmond DL, Heitman JL (2019) Comparing four methods of measuring soil organic matter in North Carolina soils. Soil Sci Soc Am J 83(2):466–474. https://doi.org/10.2136/sssaj2018.03.0105 DOI

Różański S, Jaworska H, Matuszczak K, Nowak J, Hardy A (2017) Impact of highway traffic and the acoustic screen on the content and spatial distribution of heavy metals in soils. Environ Sci Pollut Res 24(14):12778–12786. https://doi.org/10.1007/s11356-017-8910-z DOI

Saberi B (2018) The role of the automobile industry in the economy of developed countries. Int Robot Autom J 4(3):179–180. https://doi.org/10.15406/iratj.2018.04.00119 DOI

Saeedi M, Hosseinzadeh M, Jamshidi A, Pajooheshfar SP (2009) Assessment of heavy metals contamination and leaching characteristics in highway side soils, Iran. Environ Monit Assess 151(1-4):231–241. https://doi.org/10.1007/s10661-008-0264-z DOI

SHMI (2020) Air pollution in the Slovak Republic, Annual reports. http://www.shmu.sk/sk/?page = 997. Accessed 27 May 2020

Souto-Oliveira CE, Babinski M, Araújo DF, Andrade MF (2018) Multi-isotopic fingerprints (Pb, Zn, Cu) applied for urban aerosol source apportionment and discrimination. Sci Total Environ 626:1350–1366. https://doi.org/10.1016/j.scitotenv.2018.01.192 DOI

Szwalec A, Mundała P, Kędzior R, Pawlik J (2020) Monitoring and assessment of cadmium, lead, zinc and copper concentrations in arable roadside soils in terms of different traffic conditions. Environ Monit Assess 192:155. https://doi.org/10.1007/s10661-020-8120-x DOI

Tan MG, Zhang GL, Li XL, Zhang YX, Yue WS, Chen JM, Wang YS, Li AG, Li Y, Zhang YM, Shan ZC (2006) Comprehensive study of lead pollution in Shanghai by multiple techniques. Anal Chem 78(23):8044–8050. https://doi.org/10.1021/ac061365q DOI

Tarvainen T, Sapon S, Jarva J (2019) Applying heatmaps in interpretation of geochemical baseline data on urban soils in Finland. J Geochem Explor 205:106345. https://doi.org/10.1016/j.gexplo.2019.106345 DOI

Teutsch N, Erel Y, Halicz L, Banin A (2001) Distribution of natural and anthropogenic lead in Mediterranean soils. Geochim Cosmochim Acta 65(17):2853–2864. https://doi.org/10.1016/S0016-7037(01)00607-X DOI

the Slovak Road Administration (SRA) (2020) Transport engineering. https://www.ssc.sk/en/activities/road-network-development/transport-engineering.ssc . Accessed 14 November 2019

Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400(1-3):270–282. https://doi.org/10.1016/j.scitotenv.2008.06.007 DOI

Tian K, Huang B, Xing Z, Hu W (2018) In situ investigation of heavy metals at trace concentrations in greenhouse soils via portable X-ray fluorescence spectroscopy. Environ Sci Pollut Res 25(11):11011–11022. https://doi.org/10.1007/s11356-018-1405-8 DOI

Turer D (2005) Effect of non-vehicular sources on heavy metal concentrations of roadside soils. Water Air Soil Pollut 166(1-4):251–264. https://doi.org/10.1007/s11270-005-7378-5 DOI

United States Environmental Protection Agency (USEPA) (1998) Environmental technology verification report, field portable X-ray fluorescence analyzer. Metorex X-MET 920-P and 940. http://nepis.epa.gov/Adobe/PDF/30003LR0.pdf . Accessed 15 March 2020

van der Gon HD, Appelman W (2009) Lead emissions from road transport in Europe: a revision of current estimates using various estimation methodologies. Sci Total Environ 407(20):5367–5372. https://doi.org/10.1016/j.scitotenv.2009.06.027 DOI

Walraven N, van Os BJH, Klaver GT, Middelburg JJ, Davies GR (2014) The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in The Netherlands. Sci Total Environ 472:888–900. https://doi.org/10.1016/j.scitotenv.2013.11.110 DOI

Ward NI (1990) Multielement contamination of British motorway environments. Sci Total Environ 93:393–401. https://doi.org/10.1016/0048-9697(90)90130-M DOI

Wawer M, Magiera T, Ojha G, Appel E, Kusza G, Hu S, Basavaiah N (2015) Traffic-related pollutants in roadside soils of different countries in Europe and Asia. Water Air Soil Pollut 226(7):216. https://doi.org/10.1007/s11270-015-2483-6 DOI

Werkenthin M, Kluge B, Wessolek G (2014) Metals in European roadside soils and soil solution – a review. Environ Pollut 189:98–110. https://doi.org/10.1016/j.envpol.2014.02.025 DOI

Wilson SA (1997) The collection, preparation, and testing of USGS reference material BCR-2, Columbia River, Basalt. US Geological Survey Open-File Report 98-00x

Xiong Z (1998) Heavy metal contamination of urban soils and plants in relation to traffic in Wuhan city, China. Toxicol Environ Chem 65(1-4):31–39. https://doi.org/10.1080/02772249809358555 DOI

Yan X, Gao D, Zhang F, Zeng C, Xiang W, Zhang M (2013) Relationships between heavy metal concentrations in roadside topsoil and distance to road edge based on field observations in the Qinghai-Tibet Plateau, China. Int J Environ Res Public Health 10(3):762–775. https://doi.org/10.3390/ijerph10030762 DOI

Yan G, Mao L, Liu S, Mao Y, Ye H, Huang T, Li F, Chen L (2018) Enrichment and sources of trace metals in roadside soils in Shanghai, China: a case study of two urban/rural roads. Sci Total Environ 631-632:942–950. https://doi.org/10.1016/j.scitotenv.2018.02.340 DOI

Yan G, Mao L, Jiang B, Chen X, Gao Y, Chen C, Li F, Chen L (2020) The source apportionment, pollution characteristic and mobility of Sb in roadside soils affected by traffic and industrial activities. J Hazard Mater 384:121352. https://doi.org/10.1016/j.jhazmat.2019.121352 DOI

Yao PH, Shyu GS, Chang YF, Chou YC, Shen CC, Chou CS, Chang TK (2015) Lead isotope characterization of petroleum fuels in Taipei, Taiwan. Int J Environ Res Public Health 12(5):4602–4616. https://doi.org/10.3390/ijerph120504602 DOI

Yassoglou N, Kosmas C, Asimakopoulos J, Kallianou C (1987) Heavy metal contamination of roadside soils in the Greater Athens area. Environ Pollut 47(4):293–304. https://doi.org/10.1016/0269-7491(87)90149-7 DOI

Yaylalı-Abanuz G (2019) Application of multivariate statistics in the source identification of heavy-metal pollution in roadside soils of Bursa, Turkey. Arab J Geosci 12(12):382. https://doi.org/10.1007/s12517-019-4545-3 DOI

Závodský D (2008) Air pollution in Bratislava in 1965–2005. Meteorol J 11(3):89–98 (in Slovak with English abstract)

Zehetner F, Rosenfellner U, Mentler A, Gerzabek MH (2009) Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface. Water Air Soil Pollut 198(1-4):125–132. https://doi.org/10.1007/s11270-008-9831-8 DOI

Zhang F, Yan X, Zeng C, Zhang M, Shrestha S, Devkota LP, Yao T (2012) Influence of traffic activity on heavy metal concentrations of roadside farmland soil in mountainous areas. Int J Environ Res Public Health 9(5):1715–1731. https://doi.org/10.3390/ijerph9051715 DOI

Zhang H, Wang Z, Zhang Y, Ding M, Li L (2015) Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai–Tibet highway. Sci Total Environ 521–522:160–172. https://doi.org/10.1016/j.scitotenv.2015.03.054 DOI

Zhao Z, Hazelton P (2016) Evaluation of accumulation and concentration of heavy metals in different urban roadside soil types in Miranda Park, Sydney. J Soils Sediments 16(11):2548–2556. https://doi.org/10.1007/s11368-016-1460-z DOI

Zhao L, Hu G, Yan Y, Yu R, Cui J, Wang X, Yan Y (2019) Source apportionment of heavy metals in urban road dust in a continental city of eastern China: using Pb and Sr isotopes combined with multivariate statistical analysis. Atmos Environ 201:201–211. https://doi.org/10.1016/j.atmosenv.2018.12.050 DOI

Zupančič N (1999) Lead contamination in the roadside soils of Slovenia. Environ Geochem Health 21(1):37–50. https://doi.org/10.1023/A:1006539626650 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...