• This record comes from PubMed

"Parasite turnover zone" at secondary contact: A new pattern in host-parasite population genetics

. 2020 Dec ; 29 (23) : 4653-4664. [epub] 20201015

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

We describe here a new pattern of population genetic structure in a host-parasite system that can arise after secondary contact of previously isolated populations. Due to different generation times, and therefore different tempos of molecular evolution, the host and parasite populations reach different degrees of genetic differentiation during their separation (e.g., in refugia). Consequently, upon secondary contact, the host populations are able to re-establish a single panmictic population across the area of contact, while the parasite populations stop their dispersal at the secondary contact zone and create a narrow hybrid zone. From the host's perspective, the parasite's hybrid zone functions on a microevolutionary scale as a "parasite turnover zone": while the hosts are passing from area A to area B, their parasites turn genetically from the area A genotypes to the area B genotypes. We demonstrate this novel pattern with a model composed of Apodemus mice and Polyplax lice by comparing maternally inherited markers (complete mitochondrial genomes, and complete genomes of the vertically transmitted symbiont Legionella polyplacis) with single nucleotide polymorphisms derived from louse genomic data. We discuss the circumstances that may lead to this pattern and possible reasons why it has been overlooked in studies of host-parasite population genetics.

See more in PubMed

Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655-1664. https://doi.org/10.1101/gr.094052.109

Allen, J. M., LaFrance, R., Folk, R. A., Johnson, K. P., & Guralnick, R. P. (2018). aTRAM 2.0: An Improved, Flexible Locus Assembler for NGS Data. Evolutionary Bioinformatics, 14, 0-3. https://doi.org/10.1177/1176934318774546

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389

Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M., Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., … Zagnitko, O. (2008). The RAST Server: Rapid annotations using subsystems technology. BMC Genomics, 9, 75. https://doi.org/10.1186/1471-2164-9-75

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19, 455-477. https://doi.org/10.1089/cmb.2012.0021

Barrett, L. G., Thrall, P. H., Burdon, J. J., & Linde, C. C. (2008). Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends in Ecology and Evolution, 23, 678-685. https://doi.org/10.1016/j.tree.2008.06.017

Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J. M., Middendorf, J., & Stadler, P. F. (2013). MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69, 313-319. https://doi.org/10.1016/j.ympev.2012.08.023

Cameron, S. L., Yoshizawa, K., Mizukoshi, A., Whiting, M. F., & Johnson, K. P. (2011). Mitochondrial genome deletions and minicircles are common in lice (Insecta: Phthiraptera). BMC Genomics, 12, 394. https://doi.org/10.1186/1471-2164-12-394

Čížková, D., Baird, S. J. E., Těšíková, J., Voigt, S., Ľudovít, Ď., Piálek, J., & Goüy de Bellocq, J. (2018). Host subspecific viral strains in European house mice: Murine cytomegalovirus in the Eastern (Mus musculus musculus) and Western house mouse (Mus musculus domesticus). Virology, 521, 92-98. https://doi.org/10.1016/j.virol.2018.05.023

Criscione, C., Poulin, R., & Blouin, M. (2005). Molecular ecology of parasites: Elucidating ecological and microevolutionary processes. Molecular Ecology, 14, 2247-2257. https://doi.org/10.1111/j.1365-294X.2005.02587.x

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., & Durbin, R.; 1000 Genomes Project Analysis Group. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. https://doi.org/10.1093/bioinformatics/btr330

Darling, A. C. E., Mau, B., Blattner, F. R., & Perna, N. T. (2004). Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Research, 14, 1394-1403. https://doi.org/10.1101/gr.2289704

Darriba, D., Taboada, G., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109

Dong, W. G., Song, S., Jin, D.-C., Guo, X.-G., & Shao, R. (2014). Fragmented mitochondrial genomes of the rat lice, Polyplax asiatica and Polyplax spinulosa: Intra-genus variation in fragmentation pattern and a possible link between the extent of fragmentation and the length of life cycle. BMC Genomics, 15, 44. https://doi.org/10.1186/1471-2164-15-44

du Toit, N., van Vuuren, B., Matthee, S., & Matthee, C. (2013). Biogeography and host-related factors trump parasite life history: Limited congruence among the genetic structures of specific ectoparasitic lice and their rodent hosts. Molecular Ecology, 22, 5185-5204. https://doi.org/10.1111/mec.12459

Gómez-Díaz, E., González-Solís, J., Peinado, J. A., & Page, R. D. M. (2007). Lack of host-dependent genetic structure in ectoparasites of Calonectris shearwaters. Molecular Ecology, 16, 5204-5215.

Goüy de Bellocq, J., Wasimuddin, Ribas, A., Bryja, J., Piálek, J., & Baird, S. J. E. (2018). Holobiont suture zones: Parasite evidence across the European house mouse hybrid zone. Molecular Ecology, 27, 5214-5227. https://doi.org/10.1111/mec.14938

Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307-321. https://doi.org/10.1093/sysbio/syq010

Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696-704. https://doi.org/10.1080/10635150390235520

Hafner, D., Hafner, M., Spradling, T., Light, J., & Demastes, J. (2019). Temporal and spatial dynamics of competitive parapatry in chewing lice. Ecology and Evolution, 9, 7410-7424. https://doi.org/10.1002/ece3.5183

Harper, S., Spradling, T., Demastes, J., & Calhoun, C. (2015). Host behaviour drives parasite genetics at multiple geographic scales: Population genetics of the chewing louse, Thomomydoecus minor. Molecular Ecology, 24, 4129-4144.

Hill, G. E. (2019). Mitonuclear Ecology. Oxford Series in Ecology and Evolution (p. 302).

Jarne, P., & Theron, A. (2001). Genetic structure in natural populations of flukes and snails: A practical approach and review. Parasitology, 123, 27-40. https://doi.org/10.1017/S0031182001007715

Johnson, K. P., Allen, J. M., Olds, B. P., Mugisha, L., Reed, D. L., Paige, K. N., & Pittendrigh, B. R. (2014). Rates of genomic divergence in humans, chimpanzees and their lice. Proceedings of Royal Society B, 281, 20132174. https://doi.org/10.1098/rspb.2013.2174

Jones, P. H., & Britten, H. B. (2010). The absence of concordant population genetic structurein the black-tailed prairie dog and the flea, Oropsylla hirsuta, with implications for the spread of Yersinia pestis. Molecular Ecology, 19, 2038-2049. https://doi.org/10.1111/j.1365-294X.2010.04634.x

Kolmogorov, M., Yuan, J., Lin, Y., & Pevzner, P. A. (2019). Assembly of long, error-prone reads using repeat graphs. Nature Biotechnology, 37, 540. https://doi.org/10.1038/s41587-019-0072-8

Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15, 1179-1191. https://doi.org/10.1111/1755-0998.12387

Langmead, B., & Salzberg, S. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357-359. https://doi.org/10.1038/nmeth.1923

Lee, T. H., Guo, H., Wang, X., Kim, C., & Paterson, A. H. (2014). SNPhylo: A pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics, 15. https://doi.org/10.1186/1471-2164-15-162

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-2079. https://doi.org/10.1093/bioinformatics/btp352

Louhi, K. J., Karvonen, A., Rellstab, C. H., & Jokela, J. (2010). Is the population genetic structure of complex life cycle parasites determined by the geographic range of the most motile host? Infection, Genetics and Evolution, 10, 1271-1277. https://doi.org/10.1016/j.meegid.2010.08.013

Martin Cerezo, M. L. (2019). European phylogeography and genetic structure of wood and yellow-necked mice Apodemus sylvaticus and Apodemus flavicollis based on whole-genome, high-density genotyping by restriction-site-associated DNA sequencing (RAD-seq). Doctoral thesis. University of Huddersfield. http://eprints.hud.ac.uk/id/eprint/35028/

Martin Cerezo, M. L., Kucka, M., Zub, K., Chan, Y. F., & Bryk, J. (2020). Population structure of Apodemus flavicollis and comparison to Apodemus sylvaticus in northern Poland based on RAD-seq. BMC Genomics, 21(1), 1-14.

Martinů, J., Hypša, V., & Štefka, J. (2018). Host specificity driving genetic structure and diversity in ectoparasite populations: Coevolutionary patterns in Apodemus mice and their lice. Ecology and Evolution, 8, 10008-10022.

Maze-Guilmo, E., Blanchet, S., McCoy, K., & Loot, G. (2016). Host dispersal as the driver of parasite genetic structure: A paradigm lost? Ecology Letters, 19, 336-347. https://doi.org/10.1111/ele.12564

McCoy, K. D., Chapuis, E., Tirard, C., Boulinier, T., Michalakis, Y., Le Bohec, C., Le Maho, Y., & Gauthier-Clerc, M. (2005). Recurrent evolution of host-specialized races in a globally distributed parasite. Proceedings of the Royal Society B -Biological Sciences, 272, 2389-2395. https://doi.org/10.1098/rspb.2005.3230

Nieberding, C., Morand, S., Libois, R., & Michaux, J. (2004). A parasite reveals cryptic phylogeographic history of its host. Proceedings of the Royal Society B-Biological Sciences, 271, 2559-2568. https://doi.org/10.1098/rspb.2004.2930

Page, R. D. M. (2003). Tangled Trees: Phylogeny, cospeciation and coevolution. University of Chicago Press.

Page, R. D. M., Lee, P. L. M., Becher, S. A., Griffiths, R., & Clayton, D. H. (1998). A different tempo of mitochondrial DNA evolution in birds and their parasitic lice. Molecular Phylogenetics and Evolution, 9, 276-293. https://doi.org/10.1006/mpev.1997.0458

Říhová, J., Nováková, E., Husník, F., & Hypša, V. (2017). Legionella becoming a mutualist: Adaptive processes shaping the genome of symbiont in the louse Polyplax serrata. Genome Biology and Evolution, 9, 2946-2957. https://doi.org/10.1093/gbe/evx217

Song, F., Li, H. U., Liu, G.-H., Wang, W., James, P., Colwell, D. D., Tran, A., Gong, S., Cai, W., & Shao, R. (2019). Mitochondrial genome fragmentation unites the parasitic lice of Eutherian mammals. Systematic Biology, 68, 430-440. https://doi.org/10.1093/sysbio/syy062

Štefka, J., Hoeck, P. E. A., Keller, L. F., & Smith, V. S. (2011). A hitchhikers guide to the Galápagos: Co-phylogeography of Galápagos mockingbirds and their parasites. BMC Evolutionary Biology, 11, 284. https://doi.org/10.1186/1471-2148-11-284

Sweet, A. D., & Johnson, K. P. (2018). The role of parasite dispersal in shaping a host-parasite system at multiple evolutionary scales. Molecular Ecology, 2724, 5104-5119. https://doi.org/10.1111/mec.14937

Theodosopoulos, A. N., Hund, A. K., & Taylor, S. A. (2019). Parasites and host species barriers in animal hybrid zones. Trends in Ecology and Evolution, 34, 19-30. https://doi.org/10.1016/j.tree.2018.09.011

Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., Banks, E., Garimella, K. V., Altshuler, D., Gabriel, S., & DePristo, M. A. (2013). From FastQ data to high confidence variant calls: The genome analysis toolkit best practices pipeline. Current Protocols in Bioinformatics, 43, 11.10.1-33.

Waterhouse, R. M., Seppey, M., Simão, F. A., Manni, M., Ioannidis, P., Klioutchnikov, G., Kriventseva, E. V., & Zdobnov, E. M. (2017). BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular Biology and Evolution, 35, 543-548. https://doi.org/10.1093/molbev/msx319

Whiteman, N. K., Kimball, R. T., & Parker, P. G. (2007). Co-phylogeography and comparative population genetics of the threatened Galápagos hawk and three ectoparasite species: Ecology shapes population histories within parasite communities. Molecular Ecology, 16, 4759-4773. https://doi.org/10.1111/j.1365-294X.2007.03512.x

Wolff, J. N., Ladoukakis, E. D., Enríquez, J. A., & Dowling, D. K. (2014). Mitonuclear interactions: Evolutionary consequences over multiple biological scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130443.

See more in PubMed

Dryad
10.5061/dryad.p5hqbzkm7

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...