Transparent and luminescent glasses of gold thiolate coordination polymers
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
33033596
PubMed Central
PMC7505088
DOI
10.1039/d0sc02258f
PII: d0sc02258f
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Obtaining transparent glasses made of functional coordination polymers (CPs) represents a tremendous opportunity for optical applications. In this context, the first transparent and red-emissive glasses of gold thiolate CPs have been obtained by simply applying mechanical pressure to amorphous powders of CPs. The three gold-based CP glasses are composed of either thiophenolate [Au(SPh)] n , phenylmethanethiolate [Au(SMePh)] n or phenylethanethiolate [Au(SEtPh)] n . The presence of a longer alkyl chain between the thiolate and the phenyl ring led to the formation of glass with higher transparency. The glass transitions, measured by thermomechanical analysis (TMA), occurred at lower temperature for CPs with longer alkyl chains. In addition, all three gold thiolate glasses exhibit red emission at 93 K and one of them, [Au(SMePh)] n , remains luminescent even at room temperature. An in-depth structural study of the amorphous gold thiolates by XRD, PDF and EXAFS analysis showed that they are formed of disordered doubly interpenetrated helical chains. These d10 metal-based compounds represent the first examples of transparent and luminescent CP glasses.
Diamond Light Source Ltd Diamond House Harwell Science and Innovation Campus Didcot OX11 0DE UK
ISIS Facility STFC Rutherford Appleton Laboratory Didcot OX11 0QX UK
Univ Grenoble Alpes CNRS Institut Néel Grenoble France
Univ Lyon Université Claude Bernard Lyon 1 CNRS Institut Lumière Matière Villeurbanne France
Université Paris Saclay UVSQ CNRS UMR 8180 Institut Lavoisier de Versailles 78000 Versailles France
See more in PubMed
Bennett T. D., Tan J.-C., Yue Y., Baxter E., Ducati C., Terrill N. J., Yeung H. H. M., Zhou Z., Chen W., Henke S., Cheetham A. K., Greaves G. N. Nat. Commun. 2015;6:8079. PubMed PMC
Bennett T. D., Horike S. Nat. Rev. Mater. 2018;3:431.
Zhou C., Longley L., Krajnc A., Smales G. J., Qiao A., Erucar I., Doherty C. M., Thornton A. W., Hill A. J., Ashling C. W., Qazvini O. T., Lee S. J., Chater P. A., Terrill N. J., Smith A. J., Yue Y., Mali G., Keen D. A., Telfer S. G., Bennett T. D. Nat. Commun. 2018;9:5042. PubMed PMC
Frentzel-Beyme L., Kloß M., Kolodzeiski P., Pallach R., Henke S. J. Am. Chem. Soc. 2019;141:12362. PubMed
Qiao A., Tao H., Carson M. P., Aldrich S. W., Thirion L. M., Bennett T. D., Mauro J. C., Yue Y. Opt. Lett. 2019;44:1623. PubMed
Chapman K. W., Sava D. F., Halder G. J., Chupas P. J., Nenoff T. M. J. Am. Chem. Soc. 2011;133:18583. PubMed
Bennett T. D., Saines P. J., Keen D. A., Tan J.-C., Cheetham A. K. Chem.–Eur. J. 2013;19:7049. PubMed
Horike S., Chen W., Itakura T., Inukai M., Umeyama D., Asakura H., Kitagawa S. Chem. Commun. 2014;50:10241. PubMed
Nagarkar S. S., Horike S., Itakura T., Le Ouay B., Demessence A., Tsujimoto M., Kitagawa S. Angew. Chem., Int. Ed. 2017;56:4976. PubMed
Umeyama D., Horike S., Tassel C., Kageyama H., Higo Y., Hagi K., Ogiwara N., Kitagawa S. APL Mater. 2014;2:124401.
Umeyama D., Horike S., Inukai M., Itakura T., Kitagawa S. J. Am. Chem. Soc. 2015;137:864. PubMed
Bennett T. D., Yue Y., Li P., Qiao A., Tao H., Greaves N. G., Richards T., Lampronti G. I., Redfern S. A. T., Blanc F., Farha O. K., Hupp J. T., Cheetham A. K., Keen D. A. J. Am. Chem. Soc. 2016;138:3484. PubMed
Chen W., Horike S., Umeyama D., Ogiwara N., Itakura T., Tassel C., Goto Y., Kageyama H., Kitagawa S. Angew. Chem., Int. Ed. 2016;55:5195. PubMed
Lavenn C., Okhrimenko L., Guillou N., Monge M., Ledoux G., Dujardin C., Chiriac R., Fateeva A., Demessence A. J. Mater. Chem. C. 2015;3:4115.
Veselska O., Cai L., Podbevšek D., Ledoux G., Guillou N., Pilet G., Fateeva A., Demessence A. Inorg. Chem. 2018;57:2736. PubMed
Vaidya S., Veselska O., Zhadan A., Daniel M., Ledoux G., Fateeva A., Tsuruoka T., Demessence A. J. Mater. Chem. C. 2020 doi: 10.1039/d0tc01706j. DOI
Veselska O., Demessence A. Coord. Chem. Rev. 2018;355:240.
Lavenn C., Guillou N., Monge M., Podbevšek D., Ledoux G., Fateeva A., Demessence A. Chem. Commun. 2016;52:9063. PubMed
Veselska O., Okhrimenko L., Guillou N., Podbevsek D., Ledoux G., Dujardin C., Monge M., Chevrier D. M., Yang R., Zhang P., Fateeva A., Demessence A. J. Mater. Chem. C. 2017;5:9843.
Veselska O., Podbevšek D., Ledoux G., Fateeva A., Demessence A. Chem. Commun. 2017;53:12225. PubMed
Yan H., Hohman J. N., Li F. H., Jia C., Solis-Ibarra D., Wu B., Dahl J. E. P., Carlson R. M. K., Tkachenko B. A., Fokin A. A., Schreiner P. R., Vailionis A., Kim T. R., Devereaux T. P., Shen Z.-X., Melosh N. A. Nat. Mater. 2017;16:349. PubMed
Schriber E. A., Popple D. C., Yeung M., Brady M. A., Corlett S. A., Hohman J. N. ACS Appl. Nano Mater. 2018;1:3498.
Report on critical raw materials for the EU, 2017, https://ec.europa.eu/growth/sectors/raw.
Hirai Y., Nakanishi T., Kitagawa Y., Fushimi K., Seki T., Ito H., Fueno H., Tanaka K., Satoh T., Hasegawa Y. Inorg. Chem. 2015;54:4364. PubMed
Liu C., Li G., Pang G., Jin R. RSC Adv. 2013;3:9778.
Luo Z., Nachammai V., Zhang B., Yan N., Leong D. T., Jiang D.-e., Xie J. J. Am. Chem. Soc. 2014;136:10577. PubMed
Yagai S., Seki T., Aonuma H., Kawaguchi K., Karatsu T., Okura T., Sakon A., Uekusa H., Ito H. Chem. Mater. 2016;28:234.
Yoshimitsu S., Shogo Y., Masato M., Christoph W., Takashi K. Adv. Mater. 2016;28:1073. PubMed
Jin M., Seki T., Ito H. J. Am. Chem. Soc. 2017;139:7452. PubMed
Ye Z., de la Rama L. P., Efremov M. Y., Sutrisno A., Allen L. H. J. Phys. Chem. C. 2017;121:13916.
Espinet P., Lequerica M. C., Martin-Alvarez J. M. Chem.–Eur. J. 1999;5:1982.
Levchenko A. A., Yee C. K., Parikh A. N., Navrotsky A. Chem. Mater. 2005;17:5428.
Kim J.-U., Cha S.-H., Shin K., Jho J. Y., Lee J.-C. J. Am. Chem. Soc. 2004;127:9962. PubMed
Cha S.-H., Kim K.-H., Kim J.-U., Lee W.-K., Lee J.-C. J. Phys. Chem. C. 2008;112:13862.
Luo Z., Yuan X., Yu Y., Zhang Q., Leong D. T., Lee J. Y., Xie J. J. Am. Chem. Soc. 2012;134:16662. PubMed
Readman J. E., Forster P. M., Chapman K. W., Chupas P. J., Parise J. B., Hriljac J. A. Chem. Commun. 2009:3383. PubMed
Bennett T. D., Goodwin A. L., Dove M. T., Keen D. A., Tucker M. G., Barney E. R., Soper A. K., Bithell E. G., Tan J.-C., Cheetham A. K. Phys. Rev. Lett. 2010;104:115503. PubMed
Keen D. A. J. Appl. Crystallogr. 2001;34:172. PubMed PMC
Rodríguez-Carvajal J., MolPDF, 2016.
Schmidbaur H., Schier A. Chem. Soc. Rev. 2012;41:370. PubMed
Bonasia P. J., Gindelberger D. E., Arnold J. Inorg. Chem. 1993;32:5126.
Wojnowski W., Becker B., Sassmannshausen J., Peters E.-M., Peters K., von Schnering H. G. Z. Anorg. Allg. Chem. 1994;620:1417.
Dass A., Stevenson A., Dubay G. R., Tracy J. B., Murray R. W. J. Am. Chem. Soc. 2008;130:5940. PubMed
Harkness K. M., Cliffel D. E., McLean J. A. Analyst. 2010;135:868. PubMed PMC
Simpson C. A., Farrow C. L., Tian P., Billinge S. J. L., Huffman B. J., Harkness K. M., Cliffel D. E. Inorg. Chem. 2010;49:10858. PubMed PMC
Bunău O., Joly Y. J. Phys.: Condens. Matter. 2009;21:345501. PubMed