• This record comes from PubMed

Transparent and luminescent glasses of gold thiolate coordination polymers

. 2020 Jul 14 ; 11 (26) : 6815-6823. [epub] 20200609

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Obtaining transparent glasses made of functional coordination polymers (CPs) represents a tremendous opportunity for optical applications. In this context, the first transparent and red-emissive glasses of gold thiolate CPs have been obtained by simply applying mechanical pressure to amorphous powders of CPs. The three gold-based CP glasses are composed of either thiophenolate [Au(SPh)] n , phenylmethanethiolate [Au(SMePh)] n or phenylethanethiolate [Au(SEtPh)] n . The presence of a longer alkyl chain between the thiolate and the phenyl ring led to the formation of glass with higher transparency. The glass transitions, measured by thermomechanical analysis (TMA), occurred at lower temperature for CPs with longer alkyl chains. In addition, all three gold thiolate glasses exhibit red emission at 93 K and one of them, [Au(SMePh)] n , remains luminescent even at room temperature. An in-depth structural study of the amorphous gold thiolates by XRD, PDF and EXAFS analysis showed that they are formed of disordered doubly interpenetrated helical chains. These d10 metal-based compounds represent the first examples of transparent and luminescent CP glasses.

See more in PubMed

Bennett T. D., Tan J.-C., Yue Y., Baxter E., Ducati C., Terrill N. J., Yeung H. H. M., Zhou Z., Chen W., Henke S., Cheetham A. K., Greaves G. N. Nat. Commun. 2015;6:8079. PubMed PMC

Bennett T. D., Horike S. Nat. Rev. Mater. 2018;3:431.

Zhou C., Longley L., Krajnc A., Smales G. J., Qiao A., Erucar I., Doherty C. M., Thornton A. W., Hill A. J., Ashling C. W., Qazvini O. T., Lee S. J., Chater P. A., Terrill N. J., Smith A. J., Yue Y., Mali G., Keen D. A., Telfer S. G., Bennett T. D. Nat. Commun. 2018;9:5042. PubMed PMC

Frentzel-Beyme L., Kloß M., Kolodzeiski P., Pallach R., Henke S. J. Am. Chem. Soc. 2019;141:12362. PubMed

Qiao A., Tao H., Carson M. P., Aldrich S. W., Thirion L. M., Bennett T. D., Mauro J. C., Yue Y. Opt. Lett. 2019;44:1623. PubMed

Chapman K. W., Sava D. F., Halder G. J., Chupas P. J., Nenoff T. M. J. Am. Chem. Soc. 2011;133:18583. PubMed

Bennett T. D., Saines P. J., Keen D. A., Tan J.-C., Cheetham A. K. Chem.–Eur. J. 2013;19:7049. PubMed

Horike S., Chen W., Itakura T., Inukai M., Umeyama D., Asakura H., Kitagawa S. Chem. Commun. 2014;50:10241. PubMed

Nagarkar S. S., Horike S., Itakura T., Le Ouay B., Demessence A., Tsujimoto M., Kitagawa S. Angew. Chem., Int. Ed. 2017;56:4976. PubMed

Umeyama D., Horike S., Tassel C., Kageyama H., Higo Y., Hagi K., Ogiwara N., Kitagawa S. APL Mater. 2014;2:124401.

Umeyama D., Horike S., Inukai M., Itakura T., Kitagawa S. J. Am. Chem. Soc. 2015;137:864. PubMed

Bennett T. D., Yue Y., Li P., Qiao A., Tao H., Greaves N. G., Richards T., Lampronti G. I., Redfern S. A. T., Blanc F., Farha O. K., Hupp J. T., Cheetham A. K., Keen D. A. J. Am. Chem. Soc. 2016;138:3484. PubMed

Chen W., Horike S., Umeyama D., Ogiwara N., Itakura T., Tassel C., Goto Y., Kageyama H., Kitagawa S. Angew. Chem., Int. Ed. 2016;55:5195. PubMed

Lavenn C., Okhrimenko L., Guillou N., Monge M., Ledoux G., Dujardin C., Chiriac R., Fateeva A., Demessence A. J. Mater. Chem. C. 2015;3:4115.

Veselska O., Cai L., Podbevšek D., Ledoux G., Guillou N., Pilet G., Fateeva A., Demessence A. Inorg. Chem. 2018;57:2736. PubMed

Vaidya S., Veselska O., Zhadan A., Daniel M., Ledoux G., Fateeva A., Tsuruoka T., Demessence A. J. Mater. Chem. C. 2020 doi: 10.1039/d0tc01706j. DOI

Veselska O., Demessence A. Coord. Chem. Rev. 2018;355:240.

Lavenn C., Guillou N., Monge M., Podbevšek D., Ledoux G., Fateeva A., Demessence A. Chem. Commun. 2016;52:9063. PubMed

Veselska O., Okhrimenko L., Guillou N., Podbevsek D., Ledoux G., Dujardin C., Monge M., Chevrier D. M., Yang R., Zhang P., Fateeva A., Demessence A. J. Mater. Chem. C. 2017;5:9843.

Veselska O., Podbevšek D., Ledoux G., Fateeva A., Demessence A. Chem. Commun. 2017;53:12225. PubMed

Yan H., Hohman J. N., Li F. H., Jia C., Solis-Ibarra D., Wu B., Dahl J. E. P., Carlson R. M. K., Tkachenko B. A., Fokin A. A., Schreiner P. R., Vailionis A., Kim T. R., Devereaux T. P., Shen Z.-X., Melosh N. A. Nat. Mater. 2017;16:349. PubMed

Schriber E. A., Popple D. C., Yeung M., Brady M. A., Corlett S. A., Hohman J. N. ACS Appl. Nano Mater. 2018;1:3498.

Report on critical raw materials for the EU, 2017, https://ec.europa.eu/growth/sectors/raw.

Hirai Y., Nakanishi T., Kitagawa Y., Fushimi K., Seki T., Ito H., Fueno H., Tanaka K., Satoh T., Hasegawa Y. Inorg. Chem. 2015;54:4364. PubMed

Liu C., Li G., Pang G., Jin R. RSC Adv. 2013;3:9778.

Luo Z., Nachammai V., Zhang B., Yan N., Leong D. T., Jiang D.-e., Xie J. J. Am. Chem. Soc. 2014;136:10577. PubMed

Yagai S., Seki T., Aonuma H., Kawaguchi K., Karatsu T., Okura T., Sakon A., Uekusa H., Ito H. Chem. Mater. 2016;28:234.

Yoshimitsu S., Shogo Y., Masato M., Christoph W., Takashi K. Adv. Mater. 2016;28:1073. PubMed

Jin M., Seki T., Ito H. J. Am. Chem. Soc. 2017;139:7452. PubMed

Ye Z., de la Rama L. P., Efremov M. Y., Sutrisno A., Allen L. H. J. Phys. Chem. C. 2017;121:13916.

Espinet P., Lequerica M. C., Martin-Alvarez J. M. Chem.–Eur. J. 1999;5:1982.

Levchenko A. A., Yee C. K., Parikh A. N., Navrotsky A. Chem. Mater. 2005;17:5428.

Kim J.-U., Cha S.-H., Shin K., Jho J. Y., Lee J.-C. J. Am. Chem. Soc. 2004;127:9962. PubMed

Cha S.-H., Kim K.-H., Kim J.-U., Lee W.-K., Lee J.-C. J. Phys. Chem. C. 2008;112:13862.

Luo Z., Yuan X., Yu Y., Zhang Q., Leong D. T., Lee J. Y., Xie J. J. Am. Chem. Soc. 2012;134:16662. PubMed

Readman J. E., Forster P. M., Chapman K. W., Chupas P. J., Parise J. B., Hriljac J. A. Chem. Commun. 2009:3383. PubMed

Bennett T. D., Goodwin A. L., Dove M. T., Keen D. A., Tucker M. G., Barney E. R., Soper A. K., Bithell E. G., Tan J.-C., Cheetham A. K. Phys. Rev. Lett. 2010;104:115503. PubMed

Keen D. A. J. Appl. Crystallogr. 2001;34:172. PubMed PMC

Rodríguez-Carvajal J., MolPDF, 2016.

Schmidbaur H., Schier A. Chem. Soc. Rev. 2012;41:370. PubMed

Bonasia P. J., Gindelberger D. E., Arnold J. Inorg. Chem. 1993;32:5126.

Wojnowski W., Becker B., Sassmannshausen J., Peters E.-M., Peters K., von Schnering H. G. Z. Anorg. Allg. Chem. 1994;620:1417.

Dass A., Stevenson A., Dubay G. R., Tracy J. B., Murray R. W. J. Am. Chem. Soc. 2008;130:5940. PubMed

Harkness K. M., Cliffel D. E., McLean J. A. Analyst. 2010;135:868. PubMed PMC

Simpson C. A., Farrow C. L., Tian P., Billinge S. J. L., Huffman B. J., Harkness K. M., Cliffel D. E. Inorg. Chem. 2010;49:10858. PubMed PMC

Bunău O., Joly Y. J. Phys.: Condens. Matter. 2009;21:345501. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...