Evaluation of Structurally Different Ionic Liquid-Based Surfactants in a Green Microwave-Assisted Extraction for the Flavonoids Profile Determination of Mangifera sp. and Passiflora sp. Leaves from Canary Islands

. 2020 Oct 15 ; 25 (20) : . [epub] 20201015

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33076463

Grantová podpora
MAT2017-89207-R Ministerio de Economía y Competitividad (Spain)

Aqueous solutions of ionic liquids (ILs) with surface active properties were used as extraction solvents, taking advantage of their impressive solvation properties, in a green microwave-assisted solid-liquid extraction method (IL-MA-SLE) for the extraction of flavonoids from passion fruit and mango leaves. The extraction method was combined with high-performance liquid chromatography and photodiode-array detection (HPLC-PDA) and optimized by response surface methodology using the Box-Behnken experimental design. Under optimum conditions, the extraction efficiency of six structurally different IL-based surfactants was evaluated. Thus, imidazolium-, guanidinium- and pyridinium-type ILs with different tailorable characteristics, such as side chain length and multicationic core, were assessed. The decylguanidinium chloride ([C10Gu+][Cl-]) IL-based surfactant was selected as key material given its superior performance and its low cytotoxicity, for the determination of flavonoids of several samples of Passiflora sp. and Mangifera sp. leaves from the Canary Islands, and using as target analytes: rutin, quercetin and apigenin. The analysis of 50 mg of plant material only required 525 µL of the low cytotoxic IL-based surfactant solution at 930 mM, 10.5 min of microwave irradiation at 30 °C and 50 W, which involves a simpler, faster, more efficient and greener method in comparison with other strategies reported in the literature for obtaining bioactive compounds profiles from plants.

Zobrazit více v PubMed

Armenta S., Garrigues S., De la Guardia M. Green analytical chemistry. TrAC. 2008;27:497–511. doi: 10.1016/j.trac.2008.05.003. DOI

Pacheco-Fernández I., Pino V. Green solvents in analytical chemistry. Curr. Opin. Green Sustain. Chem. 2019;18:42–50. doi: 10.1016/j.cogsc.2018.12.010. DOI

Ullah H., Wilfred C.D., Shaharun M.S. Ionic liquid-based extraction and separation trends of bioactive compounds from plant biomass. Sep. Sci. Technol. 2019;54:559–579. doi: 10.1080/01496395.2018.1505913. DOI

Passos H., Freire M.G., Coutinho J.A. Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem. 2014;16:4786–4815. doi: 10.1039/C4GC00236A. PubMed DOI PMC

Liu Z., Chen Z., Han F., Kang X., Gu H., Yang L. Microwave-assisted method for simultaneous hydrolysis and extraction in obtaining ellagic acid, gallic acid and essential oil from Eucalyptus globulus leaves using Brönsted acidic ionic liquid [HO3S (CH2) 4mim] HSO4. Ind. Crop. Prod. 2016;81:152–161. doi: 10.1016/j.indcrop.2015.11.074. DOI

Liu X., Wang Y., Kong J., Nie C., Lin X. Application of ionic liquids in the microwave-assisted extraction of quercetin from Chinese herbal medicine. Anal. Methods. 2012;4:1012–1018. doi: 10.1039/c2ay05834k. DOI

Zhao C., Lu Z., Li C., He X., Li Z., Shi K., Yang L., Fu Y., Zu Y. Optimization of ionic liquid based simultaneous ultrasonic-and microwave-assisted extraction of rutin and quercetin from leaves of velvetleaf (Abutilon theophrasti) by response surface methodology. Sci. World J. 2014;2014 doi: 10.1155/2014/283024. PubMed DOI PMC

Pacheco-Fernández I., González-Hernández P., Pino V., Ayala J.H., Afonso A.M. Ionic Liquid Devices. The Royal Society of Chemistry; Croydon, UK: 2017. Ionic Liquid-Based Surfactants: A Step forward; pp. 53–78.

Villacís-Chiriboga J., Elst K., Van Camp J., Vera E., Ruales J. Valorization of byproducts from tropical fruits: Extraction methodologies, applications, environmental, and economic assessment: A review (Part 1: General overview of the byproducts, traditional biorefinery practices, and possible applications) Compr. Rev. Food Sci. Food Saf. 2020;19:405–447. doi: 10.1111/1541-4337.12542. PubMed DOI

Altınok E., Palabiyik I., Gunes R., Toker O.S., Konar N., Kurultay S. Valorisation of grape by-products as a bulking agent in soft candies: Effect of particle size. LWT Food Sci. Technol. 2020;118:108776. doi: 10.1016/j.lwt.2019.108776. DOI

Jangra A., Pawar B. Quantification of Flavonoids from different Parts of Grapefruit (Citrus x Paradisi) from different Extraction Methods. JASFT. 2019;6:75–78.

Pimentel-Moral S., de la Luz Cádiz-Gurrea M., Rodríguez-Pérez C., Segura-Carretero A. Functional and Preservative Properties of Phytochemicals. Elsevier; Amsterdam, The Netherlands: 2020. Recent advances in extraction technologies of phytochemicals applied for the revaluation of agri-food by-products; pp. 209–239.

Hanganu D., Olah N.K., Pop C.E., Vlase L., Oniga I., Ciocarlan N., Matei A., Puscas C., Silaghi-Dumitrescu R., Benedec D. Evaluation of Polyphenolic Profile and Antioxidant Activity for Some Salvisa Species. Farmacia. 2019;67:801–805. doi: 10.31925/farmacia.2019.5.8. DOI

Fonseca L.R.D., Rodrigues R.D.A., Ramos A.D.S., da Cruz J.D., Ferreira J.L.P., Silva J.R.D.A., Amaral A.C.F. Herbal Medicinal Products from Passiflora for Anxiety: An Unexploited Potential. Sci. World J. 2020;2020:6598434. doi: 10.1155/2020/6598434. PubMed DOI PMC

Sakalem M.E., Negri G., Tabach R. Chemical composition of hydroethanolic extracts from five species of the Passiflora genus. Rev. Bras. Farmacogn. 2012;22:1219–1232. doi: 10.1590/S0102-695X2012005000108. DOI

Abourashed E.A., Vanderplank J.R., Khan I.A. High-speed extraction and HPLC fingerprinting of medicinal plants—I. Application to Passiflora flavonoids. Pharm. Biol. 2002;40:81–91. doi: 10.1076/phbi.40.2.81.5844. DOI

Umamahesh K., Sivudu S.N., Reddy O.V.S. Evaluation of antioxidant activity, total phenolics and total flavonoids in peels of five cultivars of mango (Mangifera indica) fruit. J. Med. Plants Stud. 2016;4:200–203.

Kanwal Q., Hussain I., Siddiqui H.L., Javaid A. Flavonoids from mango leaves with antibacterial activity. J. Serb. Chem. Soc. 2009;74:1389–1399. doi: 10.2298/JSC0912389K. DOI

Seal T. Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus arvensis and Oenanthe linearis of North-Eastern region in India. J. Appl. Pharm. Sci. 2016;6:157–166. doi: 10.7324/JAPS.2016.60225. DOI

Mastellone G., Pacheco-Fernández I., Rubiolo P., Pino V., Cagliero C. Sustainable Micro-Scale Extraction of Bioactive Phenolic Compounds from Vitis vinifera Leaves with Ionic Liquid-Based Surfactants. Molecules. 2020;25:3072. doi: 10.3390/molecules25133072. PubMed DOI PMC

Pacheco-Fernández I., Pino V., Lorenzo-Morales J., Ayala J.H., Afonso A.M. Salt-induced ionic liquid-based microextraction using a low cytotoxic guanidinium ionic liquid and liquid chromatography with fluorescence detection to determine monohydroxylated polycyclic aromatic hydrocarbons in urine. Anal. Bioanal. Chem. 2018;410:4701–4713. doi: 10.1007/s00216-018-0946-5. PubMed DOI

Baltazar Q.Q., Chandawalla J., Sawyer K., Anderson J.L. Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids. Colloids Surf. A. 2007;302:150–156. doi: 10.1016/j.colsurfa.2007.02.012. DOI

Nacham O., Martín-Pérez A., Steyer D.J., Trujillo-Rodríguez M.J., Anderson J.L., Pino V., Afonso A.M. Interfacial and aggregation behavior of dicationic and tricationic ionic liquid-based surfactants in aqueous solution. Colloids Surf. A. 2015;469:224–234. doi: 10.1016/j.colsurfa.2015.01.026. DOI

El Hankari S., Hesemann P. Guanidinium vs. Ammonium Surfactants in Soft-Templating Approaches: Nanostructured Silica and Zwitterionic i-Silica from Complementary Precursor–Surfactant Ion Pairs. Eur. J. Inorg. Chem. 2012;2012:5288–5298. doi: 10.1002/ejic.201200419. DOI

Gomes S.V., Portugal L.A., dos Anjos J.P., de Jesus O.N., de Oliveira E.J., David J.P., David J.M. Accelerated solvent extraction of phenolic compounds exploiting a Box-Behnken design and quantification of five flavonoids by HPLC-DAD in Passiflora species. Microchem. J. 2017;132:28–35. doi: 10.1016/j.microc.2016.12.021. DOI

Li C., Lu Z., Zhao C., Yang L., Fu Y., Shi K., He X., Li Z., Zu Y. Ionic-liquid-based ultrasound/microwave-assisted extraction of 2, 4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize (Zea mays L.) seedlings. J. Sep. Sci. 2015;38:291–300. doi: 10.1002/jssc.201401081. PubMed DOI

Wei Z., Zu Y., Fu Y., Wang W., Luo M., Zhao C., Pan Y. Ionic liquids-based microwave-assisted extraction of active components from pigeon pea leaves for quantitative analysis. Sep. Pur. Technol. 2013;102:75–81. doi: 10.1016/j.seppur.2012.09.031. DOI

Xu W., Chu K., Li H., Zhang Y., Zheng H., Chen R., Chen L. Ionic liquid-based microwave-assisted extraction of flavonoids from Bauhinia championii (Benth.) Benth. Molecules. 2012;17:14323–14335. doi: 10.3390/molecules171214323. PubMed DOI PMC

Zeng H., Wang Y., Kong J., Nie C., Yuan Y. Ionic liquid-based microwave-assisted extraction of rutin from Chinese medicinal plants. Talanta. 2010;83:582–590. doi: 10.1016/j.talanta.2010.10.006. PubMed DOI

Li C., Zhang J., Zhao C., Yang L., Zhao W., Jiang H., Ren X., Su W., Li Y., Guan J. Separation of the main flavonoids and essential oil from seabuckthorn leaves by ultrasonic/microwave-assisted simultaneous distillation extraction. R. Soc. Open Sci. 2018;5:180133. doi: 10.1098/rsos.180133. PubMed DOI PMC

Ferreira S.C., Bruns R., Ferreira H., Matos G., David J., Brandao G., da Silva E.P., Portugal L., Dos Reis P., Souza A. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta. 2007;597:179–186. doi: 10.1016/j.aca.2007.07.011. PubMed DOI

Vanyur R., Biczok L., Miskolczy Z. Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution. Colloids Surf. A. 2007;299:256–261. doi: 10.1016/j.colsurfa.2006.11.049. DOI

Asakawa T., Kitano H., Ohta A., Miyagishi S. Convenient estimation for counterion dissociation of cationic micelles using chloride-sensitive fluorescence probe. J. Colloid Interface Sci. 2001;242:284–287. doi: 10.1006/jcis.2001.7875. DOI

Pacheco-Fernández I., Pino V., Ayala J.H., Afonso A.M. Guanidinium ionic liquid-based surfactants as low cytotoxic extractants: Analytical performance in an in-situ dispersive liquid–liquid microextraction method for determining personal care products. J. Chromatogr. A. 2018;1559:102–111. doi: 10.1016/j.chroma.2017.04.061. PubMed DOI

Liu Z., Qiao L., Gu H., Yang F., Yang L. Development of Brönsted acidic ionic liquid based microwave assisted method for simultaneous extraction of pectin and naringin from pomelo peels. Sep. Pur. Technol. 2017;172:326–337. doi: 10.1016/j.seppur.2016.08.026. DOI

Gu H., Chen F., Zhang Q., Zang J. Application of ionic liquids in vacuum microwave-assisted extraction followed by macroporous resin isolation of three flavonoids rutin, hyperoside and hesperidin from Sorbus tianschanica leaves. J. Chromatogr. B. 2016;1014:45–55. doi: 10.1016/j.jchromb.2016.01.045. PubMed DOI

Mena I.F., Diaz E., Palomar J., Rodriguez J.J., Mohedano A.F. Cation and anion effect on the biodegradability and toxicity of imidazolium- and choline-based ionic liquids. Chemosphere. 2020;240:124947. doi: 10.1016/j.chemosphere.2019.124947. PubMed DOI

Lou Z., Wang H., Zhu S., Chen S., Zhang M., Wang Z. Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves. Anal. Chim. Acta. 2012;716:28–33. doi: 10.1016/j.aca.2011.03.012. PubMed DOI

Yang L., Wang H., Zu Y.-G., Zhao C., Zhang L., Chen X., Zhang Z. Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chem. Eng. J. 2011;172:705–712. doi: 10.1016/j.cej.2011.06.039. DOI

Remsing R.C., Swatloski R.P., Rogers R.D., Moyna G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: A 13 C and 35/37 Cl NMR relaxation study on model systems. Chem. Commun. 2006:1271–1273. doi: 10.1039/b600586c. PubMed DOI

Liang H., Wang W., Xu J., Zhang Q., Shen Z., Zeng Z., Li Q. Optimization of ionic liquid-based microwave-assisted extraction technique for curcuminoids from Curcuma longa L. Food Bioprod. Process. 2017;104:57–65. doi: 10.1016/j.fbp.2017.04.003. DOI

Zhang Q., Zhao S.H., Chen J., Zhang L.W. Application of ionic liquid-based microwave-assisted extraction of flavonoids from Scutellaria baicalensis Georgi. J. Chromatogr. B. 2015;1002:411–417. doi: 10.1016/j.jchromb.2015.08.021. PubMed DOI

Huddleston J.G., Visser A.E., Reichert W.M., Willauer H.D., Broker G.A., Rogers R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001;3:156–164. doi: 10.1039/b103275p. DOI

Acquadro S., Appleton S., Marengo A., Bicchi C., Sgorbini B., Mandrone M., Gai F., Peiretti P.G., Cagliero C., Rubiolo P. Grapevine Green Pruning Residues as a Promising and Sustainable Source of Bioactive Phenolic Compounds. Molecules. 2020;25:464. doi: 10.3390/molecules25030464. PubMed DOI PMC

Chan C.-H., Yusoff R., Ngoh G.-C., Kung F.W.-L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A. 2011;1218:6213–6225. doi: 10.1016/j.chroma.2011.07.040. PubMed DOI

Fan Y., Xu C., Li J., Zhang L., Yang L., Zhou Z., Zhu Y., Zhao D. Ionic liquid-based microwave-assisted extraction of verbascoside from Rehmannia root. Ind. Crop. Prod. 2018;124:59–65. doi: 10.1016/j.indcrop.2018.07.063. DOI

Zorzetto C., Sánchez-Mateo C.C., Rabanal R.M., Lupidi G., Petrelli D., Vitali L.A., Bramucci M., Quassinti L., Caprioli G., Papa F. Phytochemical analysis and in vitro biological activity of three Hypericum species from the Canary Islands (Hypericum reflexum, Hypericum canariense and Hypericum grandifolium) Fitoterapia. 2015;100:95–109. doi: 10.1016/j.fitote.2014.11.013. PubMed DOI

Papoulias E., Siomos A.S., Koukounaras A., Gerasopoulos D., Kazakis E. Effects of genetic, pre-and post-harvest factors on phenolic content and antioxidant capacity of white asparagus spears. Int. J. Mol. Sci. 2009;10:5370–5380. doi: 10.3390/ijms10125370. PubMed DOI PMC

Gimeno E., Castellote A., Lamuela-Raventós R., De la Torre M., López-Sabater M. The effects of harvest and extraction methods on the antioxidant content (phenolics, α-tocopherol, and β-carotene) in virgin olive oil. Food Chem. 2002;78:207–211. doi: 10.1016/S0308-8146(01)00399-5. DOI

Bilgin M., Şahin S. Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea europaea) leaves. J. Taiwan Inst. Chem. Eng. 2013;44:8–12. doi: 10.1016/j.jtice.2012.08.008. DOI

Iqbal S., Bhanger M. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. J. Food Compos. Anal. 2006;19:544–551. doi: 10.1016/j.jfca.2005.05.001. DOI

Orphanides A., Goulas V., Gekas V. Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech J. Food Sci. 2013;31:509–513. doi: 10.17221/526/2012-CJFS. DOI

Hossain M., Barry-Ryan C., Martin-Diana A.B., Brunton N. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010;123:85–91. doi: 10.1016/j.foodchem.2010.04.003. DOI

El-Hawary S.S., Ashour R.M.S., El-Gayed S.H., Gad H.A., Jaleel G.A.A., El Gedaily R.A. Genetic, chemical, and biological diversity in Mangifera indica L. cultivars. Pharmacogn. Res. 2020;12:186–193.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...