• This record comes from PubMed

Electrochemical Reduction and Oxidation of Eight Unnatural 2'-Deoxynucleosides at a Pyrolytic Graphite Electrode

. 2020 Dec 01 ; 362 () : . [epub] 20201005

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Grant support
R01 GM128186 NIGMS NIH HHS - United States

Recently we showed the reduction and oxidation of six natural 2'-deoxynucleosides in the presence of the ambient oxygen using the very broad potential window of a pyrolytic graphite electrode (PGE). Using the same procedure, 2'-deoxynucleoside analogs (dNs) that are parts of an artificially expanded genetic information system (AEGIS) were analyzed. Seven of the eight tested AEGIS dNs provided specific signals (voltammetric redox peaks). These signals, described here for the first time, will be used in future work to analyze DNA built from expanded genetic alphabets, helping to further develop AEGIS technology and its applications. Comparison of the electrochemical behavior of unnatural dNs with the previously documented behaviors of natural dNs also provides insights into the mechanisms of their respective redox processes.

See more in PubMed

Benner SA, Karalkar NB, Hoshika S, Laos R, Shaw RW, Matsuura M, Fajardo D, Moussatche P, Alternative Watson-Crick synthetic genetic systems, Cold Spring Harb. Perspect. Biol 8 (2016). 10.1101/cshperspect.a023770. PubMed DOI PMC

Yang Z, Chen F, Chamberlin SG, Benner SA, Expanded genetic alphabets in the polymerase chain reaction, Angew. Chemie - Int. Ed 49 (2010) 177–180. 10.1002/anie.200905173. PubMed DOI PMC

Hoshika S, Leal NA, Kim MJ, Kim MS, Karalkar NB, Kim HJ, Bates AM, Watkins NE, SantaLucia HA, Meyer AJ, DasGupta S, Piccirilli JA, Ellington AD, SantaLucia J, Georgiadis MM, Benner SA, Hachimoji DNA and RNA: A genetic system with eight building blocks, Science (80-. ). 363 (2019) 884–887. 10.1126/science.aat0971. PubMed DOI PMC

Piccirilli JA, Benner SA, Krauch T, Moroney SE, Benner SA, Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet, Nature. 343 (1990) 33–37. 10.1038/343033a0. PubMed DOI

Hoshika S, Singh I, Switzer C, Molt RW, Leal NA, Kim MJ, Kim MS, Kim HJ, Georgiadis MM, Benner SA, “Skinny” and “fat” DNA: Two New Double Helices, J. Am. Chem. Soc 140 (2018) 11655–11660. 10.1021/jacs.8b05042. PubMed DOI

Loakes D, Gallego J, Pinheiro VB, Kool ET, Holliger P, Evolving a polymerase for hydrophobic base analogues, J. Am. Chem. Soc 131 (2009) 14827–14837. 10.1021/ja9039696. PubMed DOI PMC

Feldman AW, Romesberg FE, Expansion of the Genetic Alphabet: A Chemist’s Approach to Synthetic Biology, Acc. Chem. Res 51 (2018) 394–403. 10.1021/acs.accounts.7b00403. PubMed DOI PMC

Yamashige R, Kimoto M, Takezawa Y, Sato A, Mitsui T, Yokoyama S, Hirao I, Highly specific unnatural base pair systems as a third base pair for PCR amplification, Nucleic Acids Res. (2012). 10.1093/nar/gkr1068. PubMed DOI PMC

Sefah K, Yang Z, Bradley KM, Hoshika S, Jiménez E, Zhang L, Zhu G, Shanker S, Yu F, Turek D, Tan W, Benner SA, In vitro selection with artificial expanded genetic information systems, Proc. Natl. Acad. Sci. U. S. A (2014). 10.1073/pnas.1311778111. PubMed DOI PMC

Zhang L, Yang Z, Sefah K, Bradley KM, Hoshika S, Kim MJ, Kim HJ, Zhu G, Jiménez E, Cansiz S, Teng IT, Champanhac C, Mclendon C, Liu C, Zhang W, Gerloff DL, Huang Z, Tan W, Benner SA, Evolution of functional six-nucleotide DNA, J. Am. Chem. Soc 137 (2015) 6734–6737. 10.1021/jacs.5b02251. PubMed DOI PMC

Zhang L, Yang Z, Le Trinh T, Teng I-T, Wang S, Bradley KM, Hoshika S, Wu Q, Cansiz S, Rowold DJ, McLendon C, Kim M-S, Wu Y, Cui C, Liu Y, Hou W, Stewart K, Wan S, Liu C, Benner SA, Tan W, Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution, Angew. Chemie Int. Ed 55 (2016) 12372–12375. 10.1002/anie.201605058. PubMed DOI PMC

Biondi E, Lane JD, Das D, Dasgupta S, Piccirilli JA, Hoshika S, Bradley KM, Krantz BA, Benner SA, Laboratory evolution of artificially expanded DNA gives redesignable aptamers that target the toxic form of anthrax protective antigen, Nucleic Acids Res. (2016). 10.1093/nar/gkw890. PubMed DOI PMC

Zhang L, Wang S, Yang Z, Hoshika S, Xie S, Li J, Chen X, Wan S, Li L, Benner SA, Tan W, An Aptamer‐Nanotrain Assembled from Six‐Letter DNA Delivers Doxorubicin Selectively to Liver Cancer Cells, Angew. Chemie (2020). 10.1002/ange.201909691. PubMed DOI PMC

Palecek E, Bartosik M, Electrochemistry of nucleic acids, Chem Rev. 112 (2012) 3427–3481. 10.1021/cr200303p. PubMed DOI

Špaček J, Fojta M, Wang J, Electrochemical Reduction and Oxidation of Six Natural 2′-Deoxynucleosides at a Pyrolytic Graphite Electrode in the Presence or Absence of Ambient Oxygen, Electroanalysis. 31 (2019) 2057–2066. 10.1002/elan.201900417. DOI

Špaček J, Daňhel A, Hasoň S, Fojta M, Label-free detection of canonical DNA bases, uracil and 5-methylcytosine in DNA oligonucleotides using linear sweep voltammetry at a pyrolytic graphite electrode, Electrochem Commun. 82 (2017) 34–38. 10.1016/j.elecom.2017.07.013. DOI

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Electric field in atomically thin carbon films, Science (80-. ). 306 (2004) 666–669. 10.1126/science.1102896. PubMed DOI

Subramanian P, Dryhurst G, Electrochemical Oxidation of Guanosine - Formation of Some Novel Guanine Oligonucleosides, J. Electroanal. Chem 224 (1987) 137–162. 10.1016/0022-0728(87)85089-1. DOI

Daňhel A, Havran L, Trnková L, Fojta M, Hydrogen Evolution Facilitates Reduction of DNA Guanine Residues at the Hanging Mercury Drop Electrode: Evidence for a Chemical Mechanism, Electroanalysis. 28 (2016) 2785–2790. 10.1002/elan.201600242. DOI

Dudova Z, Spacek J, Tomasko M, Havran L, Pivonkova H, Fojta M, Electrochemical behavior of 7-deazaguanine- and 7-deazaadenine-modified DNA at the hanging mercury drop electrode, Monatshefte Fur Chemie. 147 (2016) 3–11. 10.1007/s00706-015-1584-7. DOI

Astwood D, Lippincott T, Deysher M, D’Amico C, Szurley E, Brajter-Toth A, Electrochemical and enzymatic oxidation of 2,6-diaminopurine, J. Electroanal. Chem 159 (1983) 295–312. 10.1016/S0022-0728(83)80629-9. DOI

Khudyakov IY, Kirnos MD, Alexandrushkina NI, Vanyushin BF, Cyanophage S-2L contains DNA with 2,6-diaminopurine substituted for adenine, Virology. (1978). 10.1016/0042-6822(78)90104-6. PubMed DOI

Astwood D, Lippincott T, Deysher M, D’Amico C, Szurley E, Brajter-Toth A, Electrochemical and enzymatic oxidation of 2,6-diaminopurine, J. Electroanal. Chem 159 (1983) 295–312. 10.1016/S0022-0728(83)80629-9. DOI

Kim HJ, Chen F, Benner SA, Synthesis and properties of 5-cyano-substituted nucleoside analog with a donor-donor-acceptor hydrogen-bonding pattern, J. Org. Chem (2012). 10.1021/jo300230z. PubMed DOI

Vosáhlová J, Koláčná L, Daňhel A, Fischer J, Balintová J, Hocek M, Schwarzová-Pecková K, Fojta M, Voltammetric and adsorption study of 4-nitrophenyl-triazole-labeled 2′-deoxycytidine and 7-deazaadenosine nucleosides at boron-doped diamond electrode, J. Electroanal. Chem 821 (2018) 111–120. 10.1016/j.jelechem.2018.01.003. DOI

Laviron E, Vallat A, Meunier-Prest R, The reduction mechanism of aromatic nitro compounds in aqueous medium. Part V. The reduction of nitrosobenzene between pH 0.4 and 13, J. Electroanal. Chem 379 (1994) 427–435. 10.1016/0022-0728(94)87167-1. DOI

Subramanian P, Tyagi SK, Dryhurst G, Electrochemical oxidations of some purine nucleosides. formation of some novel purine oligonucleosides., Nucleosides and Nucleotides. 6 (1987) 25–42. 10.1080/07328318708056177. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...