Electrochemical Reduction and Oxidation of Eight Unnatural 2'-Deoxynucleosides at a Pyrolytic Graphite Electrode
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
Grant support
R01 GM128186
NIGMS NIH HHS - United States
PubMed
33087943
PubMed Central
PMC7571600
DOI
10.1016/j.electacta.2020.137210
PII: 137210
Knihovny.cz E-resources
- Keywords
- electrochemical oxidation, electrochemical reduction, electrochemistry, pyrolytic graphite, unnatural DNA,
- Publication type
- Journal Article MeSH
Recently we showed the reduction and oxidation of six natural 2'-deoxynucleosides in the presence of the ambient oxygen using the very broad potential window of a pyrolytic graphite electrode (PGE). Using the same procedure, 2'-deoxynucleoside analogs (dNs) that are parts of an artificially expanded genetic information system (AEGIS) were analyzed. Seven of the eight tested AEGIS dNs provided specific signals (voltammetric redox peaks). These signals, described here for the first time, will be used in future work to analyze DNA built from expanded genetic alphabets, helping to further develop AEGIS technology and its applications. Comparison of the electrochemical behavior of unnatural dNs with the previously documented behaviors of natural dNs also provides insights into the mechanisms of their respective redox processes.
Department of NanoEngineering University of California San Diego La Jolla CA 92093 USA
Foundation for Applied Molecular Evolution 13709 Progress Blvd Alachua FL 32615 USA
See more in PubMed
Benner SA, Karalkar NB, Hoshika S, Laos R, Shaw RW, Matsuura M, Fajardo D, Moussatche P, Alternative Watson-Crick synthetic genetic systems, Cold Spring Harb. Perspect. Biol 8 (2016). 10.1101/cshperspect.a023770. PubMed DOI PMC
Yang Z, Chen F, Chamberlin SG, Benner SA, Expanded genetic alphabets in the polymerase chain reaction, Angew. Chemie - Int. Ed 49 (2010) 177–180. 10.1002/anie.200905173. PubMed DOI PMC
Hoshika S, Leal NA, Kim MJ, Kim MS, Karalkar NB, Kim HJ, Bates AM, Watkins NE, SantaLucia HA, Meyer AJ, DasGupta S, Piccirilli JA, Ellington AD, SantaLucia J, Georgiadis MM, Benner SA, Hachimoji DNA and RNA: A genetic system with eight building blocks, Science (80-. ). 363 (2019) 884–887. 10.1126/science.aat0971. PubMed DOI PMC
Piccirilli JA, Benner SA, Krauch T, Moroney SE, Benner SA, Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet, Nature. 343 (1990) 33–37. 10.1038/343033a0. PubMed DOI
Hoshika S, Singh I, Switzer C, Molt RW, Leal NA, Kim MJ, Kim MS, Kim HJ, Georgiadis MM, Benner SA, “Skinny” and “fat” DNA: Two New Double Helices, J. Am. Chem. Soc 140 (2018) 11655–11660. 10.1021/jacs.8b05042. PubMed DOI
Loakes D, Gallego J, Pinheiro VB, Kool ET, Holliger P, Evolving a polymerase for hydrophobic base analogues, J. Am. Chem. Soc 131 (2009) 14827–14837. 10.1021/ja9039696. PubMed DOI PMC
Feldman AW, Romesberg FE, Expansion of the Genetic Alphabet: A Chemist’s Approach to Synthetic Biology, Acc. Chem. Res 51 (2018) 394–403. 10.1021/acs.accounts.7b00403. PubMed DOI PMC
Yamashige R, Kimoto M, Takezawa Y, Sato A, Mitsui T, Yokoyama S, Hirao I, Highly specific unnatural base pair systems as a third base pair for PCR amplification, Nucleic Acids Res. (2012). 10.1093/nar/gkr1068. PubMed DOI PMC
Sefah K, Yang Z, Bradley KM, Hoshika S, Jiménez E, Zhang L, Zhu G, Shanker S, Yu F, Turek D, Tan W, Benner SA, In vitro selection with artificial expanded genetic information systems, Proc. Natl. Acad. Sci. U. S. A (2014). 10.1073/pnas.1311778111. PubMed DOI PMC
Zhang L, Yang Z, Sefah K, Bradley KM, Hoshika S, Kim MJ, Kim HJ, Zhu G, Jiménez E, Cansiz S, Teng IT, Champanhac C, Mclendon C, Liu C, Zhang W, Gerloff DL, Huang Z, Tan W, Benner SA, Evolution of functional six-nucleotide DNA, J. Am. Chem. Soc 137 (2015) 6734–6737. 10.1021/jacs.5b02251. PubMed DOI PMC
Zhang L, Yang Z, Le Trinh T, Teng I-T, Wang S, Bradley KM, Hoshika S, Wu Q, Cansiz S, Rowold DJ, McLendon C, Kim M-S, Wu Y, Cui C, Liu Y, Hou W, Stewart K, Wan S, Liu C, Benner SA, Tan W, Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution, Angew. Chemie Int. Ed 55 (2016) 12372–12375. 10.1002/anie.201605058. PubMed DOI PMC
Biondi E, Lane JD, Das D, Dasgupta S, Piccirilli JA, Hoshika S, Bradley KM, Krantz BA, Benner SA, Laboratory evolution of artificially expanded DNA gives redesignable aptamers that target the toxic form of anthrax protective antigen, Nucleic Acids Res. (2016). 10.1093/nar/gkw890. PubMed DOI PMC
Zhang L, Wang S, Yang Z, Hoshika S, Xie S, Li J, Chen X, Wan S, Li L, Benner SA, Tan W, An Aptamer‐Nanotrain Assembled from Six‐Letter DNA Delivers Doxorubicin Selectively to Liver Cancer Cells, Angew. Chemie (2020). 10.1002/ange.201909691. PubMed DOI PMC
Palecek E, Bartosik M, Electrochemistry of nucleic acids, Chem Rev. 112 (2012) 3427–3481. 10.1021/cr200303p. PubMed DOI
Špaček J, Fojta M, Wang J, Electrochemical Reduction and Oxidation of Six Natural 2′-Deoxynucleosides at a Pyrolytic Graphite Electrode in the Presence or Absence of Ambient Oxygen, Electroanalysis. 31 (2019) 2057–2066. 10.1002/elan.201900417. DOI
Špaček J, Daňhel A, Hasoň S, Fojta M, Label-free detection of canonical DNA bases, uracil and 5-methylcytosine in DNA oligonucleotides using linear sweep voltammetry at a pyrolytic graphite electrode, Electrochem Commun. 82 (2017) 34–38. 10.1016/j.elecom.2017.07.013. DOI
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Electric field in atomically thin carbon films, Science (80-. ). 306 (2004) 666–669. 10.1126/science.1102896. PubMed DOI
Subramanian P, Dryhurst G, Electrochemical Oxidation of Guanosine - Formation of Some Novel Guanine Oligonucleosides, J. Electroanal. Chem 224 (1987) 137–162. 10.1016/0022-0728(87)85089-1. DOI
Daňhel A, Havran L, Trnková L, Fojta M, Hydrogen Evolution Facilitates Reduction of DNA Guanine Residues at the Hanging Mercury Drop Electrode: Evidence for a Chemical Mechanism, Electroanalysis. 28 (2016) 2785–2790. 10.1002/elan.201600242. DOI
Dudova Z, Spacek J, Tomasko M, Havran L, Pivonkova H, Fojta M, Electrochemical behavior of 7-deazaguanine- and 7-deazaadenine-modified DNA at the hanging mercury drop electrode, Monatshefte Fur Chemie. 147 (2016) 3–11. 10.1007/s00706-015-1584-7. DOI
Astwood D, Lippincott T, Deysher M, D’Amico C, Szurley E, Brajter-Toth A, Electrochemical and enzymatic oxidation of 2,6-diaminopurine, J. Electroanal. Chem 159 (1983) 295–312. 10.1016/S0022-0728(83)80629-9. DOI
Khudyakov IY, Kirnos MD, Alexandrushkina NI, Vanyushin BF, Cyanophage S-2L contains DNA with 2,6-diaminopurine substituted for adenine, Virology. (1978). 10.1016/0042-6822(78)90104-6. PubMed DOI
Astwood D, Lippincott T, Deysher M, D’Amico C, Szurley E, Brajter-Toth A, Electrochemical and enzymatic oxidation of 2,6-diaminopurine, J. Electroanal. Chem 159 (1983) 295–312. 10.1016/S0022-0728(83)80629-9. DOI
Kim HJ, Chen F, Benner SA, Synthesis and properties of 5-cyano-substituted nucleoside analog with a donor-donor-acceptor hydrogen-bonding pattern, J. Org. Chem (2012). 10.1021/jo300230z. PubMed DOI
Vosáhlová J, Koláčná L, Daňhel A, Fischer J, Balintová J, Hocek M, Schwarzová-Pecková K, Fojta M, Voltammetric and adsorption study of 4-nitrophenyl-triazole-labeled 2′-deoxycytidine and 7-deazaadenosine nucleosides at boron-doped diamond electrode, J. Electroanal. Chem 821 (2018) 111–120. 10.1016/j.jelechem.2018.01.003. DOI
Laviron E, Vallat A, Meunier-Prest R, The reduction mechanism of aromatic nitro compounds in aqueous medium. Part V. The reduction of nitrosobenzene between pH 0.4 and 13, J. Electroanal. Chem 379 (1994) 427–435. 10.1016/0022-0728(94)87167-1. DOI
Subramanian P, Tyagi SK, Dryhurst G, Electrochemical oxidations of some purine nucleosides. formation of some novel purine oligonucleosides., Nucleosides and Nucleotides. 6 (1987) 25–42. 10.1080/07328318708056177. DOI