A human secretome library screen reveals a role for Peptidoglycan Recognition Protein 1 in Lyme borreliosis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
UL1 TR001863
NCATS NIH HHS - United States
Howard Hughes Medical Institute - United States
PubMed
33175909
PubMed Central
PMC7657531
DOI
10.1371/journal.ppat.1009030
PII: PPATHOGENS-D-20-01358
Knihovny.cz E-zdroje
- MeSH
- Borrelia burgdorferi fyziologie MeSH
- cytokiny genetika metabolismus MeSH
- genová knihovna MeSH
- lidé MeSH
- lymeská nemoc mikrobiologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cytokiny MeSH
- PGLYRP1 protein, human MeSH Prohlížeč
- Pglyrp1 protein, mouse MeSH Prohlížeč
Lyme disease, the most common vector-borne illness in North America, is caused by the spirochete Borrelia burgdorferi. Infection begins in the skin following a tick bite and can spread to the hearts, joints, nervous system, and other organs. Diverse host responses influence the level of B. burgdorferi infection in mice and humans. Using a systems biology approach, we examined potential molecular interactions between human extracellular and secreted proteins and B. burgdorferi. A yeast display library expressing 1031 human extracellular proteins was probed against 36 isolates of B. burgdorferi sensu lato. We found that human Peptidoglycan Recognition Protein 1 (PGLYRP1) interacted with the vast majority of B. burgdorferi isolates. In subsequent experiments, we demonstrated that recombinant PGLYRP1 interacts with purified B. burgdorferi peptidoglycan and exhibits borreliacidal activity, suggesting that vertebrate hosts may use PGLYRP1 to identify B. burgdorferi. We examined B. burgdorferi infection in mice lacking PGLYRP1 and observed an increased spirochete burden in the heart and joints, along with splenomegaly. Mice lacking PGLYRP1 also showed signs of immune dysregulation, including lower serum IgG levels and higher levels of IFNγ, CXCL9, and CXCL10.Taken together, our findings suggest that PGLYRP1 plays a role in the host's response to B. burgdorferi and further demonstrate the utility of expansive yeast display screening in capturing biologically relevant interactions between spirochetes and their hosts.
Biology Centre Institute of Parasitology Czech Academy of Sciences Buweiss Czech Republic
ChEM H Institute Stanford University Stanford California United States of America
Department of Biology Stanford University Stanford California United States of America
Department of Entomology University of Minnesota St Paul Minnesota United States of America
Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague Czech Republic
Howard Hughes Medical Institute Chevy Chase Maryland United States of America
Microbiology Program Yale School of Medicine New Haven Connecticut United States of America
Zobrazit více v PubMed
Fikrig E, Narasimhan S. Borrelia burgdorferi—traveling incognito? Microbes Infect. 2006;8(5):1390–9 10.1016/j.micinf.2005.12.022 PubMed DOI
Marques AR. Lyme disease: a review. Curr Allergy Asthma Rep. 2010;10(1):13–20 10.1007/s11882-009-0077-3 PubMed DOI
Forrester JD, Vakkalanka JP, Holstege CP, Mead PS. Lyme Disease: What the Wilderness Provider Needs to Know. Wilderness Environ Med. 2015;26(4):555–64 10.1016/j.wem.2015.05.001 PubMed DOI
Anguita J, Rincon M, Samanta S, Barthold SW, Flavell RA, Fikrig E. Borrelia burgdorferi-infected, interleukin-6-deficient mice have decreased Th2 responses and increased lyme arthritis. J Infect Dis. 1998;178(5):1512–5 10.1086/314448 PubMed DOI
Anguita J, Hedrick MN, Fikrig E. Adaptation of Borrelia burgdorferi in the tick and the mammalian host. FEMS Microbiol Rev. 2003;27(4):493–504 10.1016/S0168-6445(03)00036-6 PubMed DOI
Petzke M, Schwartz I. Borrelia burgdorferi Pathogenesis and the Immune Response. Clin Lab Med. 2015;35(4):745–64 10.1016/j.cll.2015.07.004 PubMed DOI
Verhaegh D, Joosten LAB, Oosting M. The role of host immune cells and Borrelia burgdorferi antigens in the etiology of Lyme disease. Eur Cytokine Netw. 2017;28(2):70–84 10.1684/ecn.2017.0396 PubMed DOI
Aslam B, Nisar MA, Khurshid M, Farooq Salamat MK. Immune escape strategies of Borrelia burgdorferi. Future Microbiol. 2017;12:1219–37 10.2217/fmb-2017-0013 PubMed DOI
Motaleb MA, Liu J, Wooten RM. Spirochetal motility and chemotaxis in the natural enzootic cycle and development of Lyme disease. Curr Opin Microbiol. 2015;28:106–13 10.1016/j.mib.2015.09.006 PubMed DOI PMC
Jutras BL, Scott M, Parry B, Biboy J, Gray J, Vollmer W, et al. Lyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells. Proc Natl Acad Sci U S A. 2016;113(33):9162–70 10.1073/pnas.1610805113 PubMed DOI PMC
Jutras BL, Lochhead RB, Kloos ZA, Biboy J, Strle K, Booth CJ, et al. Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proc Natl Acad Sci U S A. 2019;116(27):13498–507 10.1073/pnas.1904170116 PubMed DOI PMC
Vollmer W, Blanot D, de Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol Rev. 2008;32(2):149–67 10.1111/j.1574-6976.2007.00094.x PubMed DOI
Schulze RJ, Zuckert WR. Borrelia burgdorferi lipoproteins are secreted to the outer surface by default. Mol Microbiol. 2006;59(5):1473–84 10.1111/j.1365-2958.2006.05039.x PubMed DOI
Wolf AJ, Underhill DM. Peptidoglycan recognition by the innate immune system. Nat Rev Immunol. 2018;18(4):243–54 10.1038/nri.2017.136 PubMed DOI
McKisic MD, Barthold SW. T-cell-independent responses to Borrelia burgdorferi are critical for protective immunity and resolution of lyme disease. Infect Immun. 2000;68(9):5190–7 10.1128/iai.68.9.5190-5197.2000 PubMed DOI PMC
Fikrig E, Barthold SW, Chen M, Chang CH, Flavell RA. Protective antibodies develop, and murine Lyme arthritis regresses, in the absence of MHC class II and CD4+ T cells. J Immunol. 1997;159(11):5682–6 PubMed
Hengge UR, Tannapfel A, Tyring SK, Erbel R, Arendt G, Ruzicka T. Lyme borreliosis. Lancet Infect Dis. 2003;3(8):489–500 10.1016/s1473-3099(03)00722-9 PubMed DOI
Cherf GM, Cochran JR. Applications of Yeast Surface Display for Protein Engineering. Methods Mol Biol. 2015;1319:155–75 10.1007/978-1-4939-2748-7_8 PubMed DOI PMC
Banskar S, Detzner AA, Juarez-Rodriguez MD, Hozo I, Gupta D, Dziarski R. The Pglyrp1-Regulated Microbiome Enhances Experimental Allergic Asthma. J Immunol. 2019;203(12):3113–25 10.4049/jimmunol.1900711 PubMed DOI
Dziarski R, Gupta D. Review: Mammalian peptidoglycan recognition proteins (PGRPs) in innate immunity. Innate Immun. 2010;16(3):168–74 10.1177/1753425910366059 PubMed DOI
Cornell KA, Knippel RJ, Cortright GR, Fonken M, Guerrero C, Hall AR, et al. Characterization of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidases from Borrelia burgdorferi: Antibiotic targets for Lyme disease. Biochim Biophys Acta Gen Subj. 2020;1864(1):129455 10.1016/j.bbagen.2019.129455 PubMed DOI PMC
Wang Y, Kern A, Boatright NK, Schiller ZA, Sadowski A, Ejemel M, et al. Pre-exposure Prophylaxis With OspA-Specific Human Monoclonal Antibodies Protects Mice Against Tick Transmission of Lyme Disease Spirochetes. J Infect Dis. 2016;214(2):205–11 10.1093/infdis/jiw151 PubMed DOI PMC
Nayak A, Schuler W, Seidel S, Gomez I, Meinke A, Comstedt P, et al. Broadly Protective Multivalent OspA Vaccine against Lyme Borreliosis, Developed Based on Surface Shaping of the C-Terminal Fragment. Infect Immun. 2020;88(4) 10.1128/IAI.00917-19 PubMed DOI PMC
Pothineni VR, Wagh D, Babar MM, Inayathullah M, Watts RE, Kim KM, et al. Screening of NCI-DTP library to identify new drug candidates for Borrelia burgdorferi. J Antibiot (Tokyo). 2017;70(3):308–12 10.1038/ja.2016.131 PubMed DOI
Schwendinger MG, O'Rourke M, Traweger A, Savidis-Dacho H, Pilz A, Portsmouth D, et al. Evaluation of OspA vaccination-induced serological correlates of protection against Lyme borreliosis in a mouse model. PLoS One. 2013;8(11):e79022 10.1371/journal.pone.0079022 PubMed DOI PMC
Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223 10.1146/annurev.immunol.23.021704.115653 PubMed DOI PMC
Barthold SW, Beck DS, Hansen GM, Terwilliger GA, Moody KD. Lyme borreliosis in selected strains and ages of laboratory mice. J Infect Dis. 1990;162(1):133–8 10.1093/infdis/162.1.133 PubMed DOI
Wang G, Ojaimi C, Iyer R, Saksenberg V, McClain SA, Wormser GP, et al. Impact of genotypic variation of Borrelia burgdorferi sensu stricto on kinetics of dissemination and severity of disease in C3H/HeJ mice. Infect Immun. 2001;69(7):4303–12 10.1128/IAI.69.7.4303-4312.2001 PubMed DOI PMC
Montgomery RR, Booth CJ, Wang X, Blaho VA, Malawista SE, Brown CR. Recruitment of macrophages and polymorphonuclear leukocytes in Lyme carditis. Infect Immun. 2007;75(2):613–20 10.1128/IAI.00685-06 PubMed DOI PMC
Stevenson B, Schwan TG, Rosa PA. Temperature-related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun. 1995;63(11):4535–9 10.1128/IAI.63.11.4535-4539.1995 PubMed DOI PMC
Stevenson B, Bono JL, Schwan TG, Rosa P. Borrelia burgdorferi erp proteins are immunogenic in mammals infected by tick bite, and their synthesis is inducible in cultured bacteria. Infect Immun. 1998;66(6):2648–54 10.1128/IAI.66.6.2648-2654.1998 PubMed DOI PMC
Das S, Barthold SW, Giles SS, Montgomery RR, Telford SR 3rd, Fikrig E. Temporal pattern of Borrelia burgdorferi p21 expression in ticks and the mammalian host. J Clin Invest. 1997;99(5):987–95 10.1172/JCI119264 PubMed DOI PMC
Schwan TG, Piesman J. Temporal changes in outer surface proteins A and C of the lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J Clin Microbiol. 2000;38(1):382–8 PubMed PMC
Hefty PS, Jolliff SE, Caimano MJ, Wikel SK, Radolf JD, Akins DR. Regulation of OspE-related, OspF-related, and Elp lipoproteins of Borrelia burgdorferi strain 297 by mammalian host-specific signals. Infect Immun. 2001;69(6):3618–27 10.1128/IAI.69.6.3618-3627.2001 PubMed DOI PMC
Beck G, Benach JL, Habicht GS. Isolation, preliminary chemical characterization, and biological activity of Borrelia burgdorferi peptidoglycan. Biochem Biophys Res Commun. 1990;167(1):89–95 10.1016/0006-291x(90)91734-a PubMed DOI
Kerstholt M, Netea MG, Joosten LAB. Borrelia burgdorferi hijacks cellular metabolism of immune cells: Consequences for host defense. Ticks Tick Borne Dis. 2020;11(3):101386 10.1016/j.ttbdis.2020.101386 PubMed DOI
Liu C, Gelius E, Liu G, Steiner H, Dziarski R. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. J Biol Chem. 2000;275(32):24490–9 10.1074/jbc.M001239200 PubMed DOI
Royet J, Gupta D, Dziarski R. Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat Rev Immunol. 2011;11(12):837–51 10.1038/nri3089 PubMed DOI
Tydell CC, Yuan J, Tran P, Selsted ME. Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties. J Immunol. 2006;176(2):1154–62 10.4049/jimmunol.176.2.1154 PubMed DOI
Sharma P, Dube D, Singh A, Mishra B, Singh N, Sinha M, et al. Structural basis of recognition of pathogen-associated molecular patterns and inhibition of proinflammatory cytokines by camel peptidoglycan recognition protein. J Biol Chem. 2011;286(18):16208–17 PubMed PMC
Royet J, Dziarski R. Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat Rev Microbiol. 2007;5(4):264–77 10.1038/nrmicro1620 PubMed DOI
Guan R, Roychowdhury A, Ember B, Kumar S, Boons GJ, Mariuzza RA. Structural basis for peptidoglycan binding by peptidoglycan recognition proteins. Proc Natl Acad Sci U S A. 2004;101(49):17168–73 10.1073/pnas.0407856101 PubMed DOI PMC
Dziarski R, Gupta D. The peptidoglycan recognition proteins (PGRPs). Genome Biol. 2006;7(8):232 10.1186/gb-2006-7-8-232 PubMed DOI PMC
Kashyap DR, Wang M, Liu LH, Boons GJ, Gupta D, Dziarski R. Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat Med. 2011;17(6):676–83 10.1038/nm.2357 PubMed DOI PMC
Dowdell AS, Murphy MD, Azodi C, Swanson SK, Florens L, Chen S, et al. Comprehensive Spatial Analysis of the Borrelia burgdorferi Lipoproteome Reveals a Compartmentalization Bias toward the Bacterial Surface. J Bacteriol. 2017;199(6) 10.1128/JB.00658-16 PubMed DOI PMC
Kashyap DR, Rompca A, Gaballa A, Helmann JD, Chan J, Chang CJ, et al. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress. PLoS Pathog. 2014;10(7):e1004280 10.1371/journal.ppat.1004280 PubMed DOI PMC
Kashyap DR, Kuzma M, Kowalczyk DA, Gupta D, Dziarski R. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism. Mol Microbiol. 2017;105(5):755–76 10.1111/mmi.13733 PubMed DOI PMC
Rogovskyy AS, Gillis DC, Ionov Y, Gerasimov E, Zelikovsky A. Antibody Response to Lyme Disease Spirochetes in the Context of VlsE-Mediated Immune Evasion. Infect Immun. 2017;85(1) 10.1128/IAI.00890-16 PubMed DOI PMC
Zhou W, Brisson D. Interactions between host immune response and antigenic variation that control Borrelia burgdorferi population dynamics. Microbiology. 2017;163(8):1179–88 10.1099/mic.0.000513 PubMed DOI PMC
Coumou J, Wagemakers A, Narasimhan S, Schuijt TJ, Ersoz JI, Oei A, et al. The role of Mannose Binding Lectin in the immune response against Borrelia burgdorferi sensu lato. Sci Rep. 2019;9(1):1431 10.1038/s41598-018-37922-8 PubMed DOI PMC
Belperron AA, Liu N, Booth CJ, Bockenstedt LK. Dual role for Fcgamma receptors in host defense and disease in Borrelia burgdorferi-infected mice. Front Cell Infect Microbiol. 2014;4:75 10.3389/fcimb.2014.00075 PubMed DOI PMC
Liu N, Montgomery RR, Barthold SW, Bockenstedt LK. Myeloid differentiation antigen 88 deficiency impairs pathogen clearance but does not alter inflammation in Borrelia burgdorferi-infected mice. Infect Immun. 2004;72(6):3195–203 10.1128/IAI.72.6.3195-3203.2004 PubMed DOI PMC
Saha S, Jing X, Park SY, Wang S, Li X, Gupta D, et al. Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-gamma. Cell Host Microbe. 2010;8(2):147–62 10.1016/j.chom.2010.07.005 PubMed DOI PMC
Park SY, Gupta D, Kim CH, Dziarski R. Differential effects of peptidoglycan recognition proteins on experimental atopic and contact dermatitis mediated by Treg and Th17 cells. PLoS One. 2011;6(9):e24961 10.1371/journal.pone.0024961 PubMed DOI PMC
Read CB, Kuijper JL, Hjorth SA, Heipel MD, Tang X, Fleetwood AJ, et al. Cutting Edge: identification of neutrophil PGLYRP1 as a ligand for TREM-1. J Immunol. 2015;194(4):1417–21 10.4049/jimmunol.1402303 PubMed DOI PMC
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40 10.1093/bioinformatics/btp616 PubMed DOI PMC
Iqbal H, Akins DR, Kenedy MR. Co-immunoprecipitation for Identifying Protein-Protein Interactions in Borrelia burgdorferi. Methods Mol Biol. 2018;1690:47–55 10.1007/978-1-4939-7383-5_4 PubMed DOI PMC
Glauner B. Separation and quantification of muropeptides with high-performance liquid chromatography. Anal Biochem. 1988;172(2):451–64 10.1016/0003-2697(88)90468-x PubMed DOI
Dziarski R, Platt KA, Gelius E, Steiner H, Gupta D. Defect in neutrophil killing and increased susceptibility to infection with nonpathogenic gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice. Blood. 2003;102(2):689–97 10.1182/blood-2002-12-3853 PubMed DOI
Swamydas M, Luo Y, Dorf ME, Lionakis MS. Isolation of Mouse Neutrophils. Curr Protoc Immunol. 2015;110:3 20 1–3 15 10.1002/0471142735.im0320s110 PubMed DOI PMC
Anguita J, Barthold SW, Samanta S, Ryan J, Fikrig E. Selective anti-inflammatory action of interleukin-11 in murine Lyme disease: arthritis decreases while carditis persists. J Infect Dis. 1999;179(3):734–7 10.1086/314613 PubMed DOI
Vrijmoeth HD, Ursinus J, Harms MG, Zomer TP, Gauw SA, Tulen AD, et al. Prevalence and determinants of persistent symptoms after treatment for Lyme borreliosis: study protocol for an observational, prospective cohort study (LymeProspect). BMC Infect Dis. 2019;19(1):324 10.1186/s12879-019-3949-8 PubMed DOI PMC