Dehydroxyhispolon Methyl Ether, A Hispolon Derivative, Inhibits WNT/β-Catenin Signaling to Elicit Human Colorectal Carcinoma Cell Apoptosis

. 2020 Nov 22 ; 21 (22) : . [epub] 20201122

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33266494

Grantová podpora
TTMHH-108R0010 Tungs' Taichung MetroHarbor Hospital

Colorectal cancer (CRC) is the fourth leading cause of cancer mortality worldwide. Aberrant activation of WNT/β-catenin signaling present in the vast majority of CRC cases is indispensable for CRC initiation and progression, and thus is a promising target for CRC therapeutics. Hispolon is a fungal-derived polyphenol with a pronounced anticancer effect. Several hispolon derivatives, including dehydroxyhispolon methyl ether (DHME), have been chemically synthesized for developing lead molecules with stronger anticancer activity. Herein, a DHME-elicited anti-CRC effect with the underlying mechanism is reported for the first time. Specifically, DHME was found to be more cytotoxic than hispolon against a panel of human CRC cell lines, while exerting limited toxicity to normal human colon cell line CCD 841 CoN. Additionally, the cytotoxic effect of DHME appeared to rely on inducing apoptosis. This notion was evidenced by DHME-elicited upregulation of poly (ADP-ribose) polymerase (PARP) cleavage and a cell population positively stained by annexin V, alongside the downregulation of antiapoptotic B-cell lymphoma 2 (BCL-2), whereas the blockade of apoptosis by the pan-caspase inhibitor z-VAD-fmk attenuated DHME-induced cytotoxicity. Further mechanistic inquiry revealed the inhibitory action of DHME on β-catenin-mediated, T-cell factor (TCF)-dependent transcription activity, suggesting that DHME thwarted the aberrantly active WNT/β-catenin signaling in CRC cells. Notably, ectopic expression of a dominant-active β-catenin mutant (∆N90-β-catenin) abolished DHME-induced apoptosis while also restoring BCL-2 expression. Collectively, we identified DHME as a selective proapoptotic agent against CRC cells, exerting more potent cytotoxicity than hispolon, and provoking CRC cell apoptosis via suppression of the WNT/β-catenin signaling axis.

Zobrazit více v PubMed

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Dekker E., Tanis P.J., Vleugels J.L.A., Kasi P.M., Wallace M.B. Colorectal cancer. Lancet. 2019;394:1467–1480. doi: 10.1016/S0140-6736(19)32319-0. PubMed DOI

Wan M.L., Wang Y., Zeng Z., Deng B., Zhu B.S., Cao T., Li Y.K., Xiao J., Han Q., Wu Q. Colorectal cancer (CRC) as a multifactorial disease and its causal correlations with multiple signaling pathways. Biosci. Rep. 2020;40:BSR20200265. doi: 10.1042/BSR20200265. PubMed DOI PMC

Koveitypour Z., Panahi F., Vakillian M., Peymani M., Forootan F.S., Esfahani M.H.N., Ghaedi K. Signaling pathways involved in colorectal cancer progression. Cell Biosci. 2019;9:97. doi: 10.1186/s13578-019-0361-4. PubMed DOI PMC

Jackstadt R., Hodder M.C., Sansom O.J. WNT and β-catenin in cancer: Genes and therapy. Annu. Rev. Cancer Biol. 2020;4:177–196. doi: 10.1146/annurev-cancerbio-030419-033628. DOI

Cheng X., Xu X., Chen D., Zhao F., Wang W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed. Pharmacother. 2019;110:473–481. doi: 10.1016/j.biopha.2018.11.082. PubMed DOI

Yu W.K., Xu Z.Y., Yuan L., Mo S., Xu B., Cheng X.D., Qin J.J. Targeting β-Catenin signaling by natural products for cancer prevention and therapy. Front. Pharmacol. 2020;11:984. doi: 10.3389/fphar.2020.00984. PubMed DOI PMC

Afrin S., Giampieri F., Gasparrini M., Forbes-Hernández T.Y., Cianciosi D., Reboredo-Rodriguez P., Zhang J., Manna P.P., Daglia M., Atanasov A.G., et al. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol. Adv. 2020;38:107322. doi: 10.1016/j.biotechadv.2018.11.011. PubMed DOI

Dow L.E., O’Rourke K.P., Simon J., Tschaharganeh D.F., van Es J.H., Clevers H., Lowe S.W. Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell. 2015;161:1539–1552. doi: 10.1016/j.cell.2015.05.033. PubMed DOI PMC

Chen W., Tan H., Liu Q., Zheng X., Zhang H., Liu Y., Xu L. A review: The bioactivities and pharmacological applications of Phellinus linteus. Molecules. 2019;24:1888. doi: 10.3390/molecules24101888. PubMed DOI PMC

Ravindran J., Subbaraju G.V., Ramani M.V., Sung B., Aggarwal B.B. Bisdemethylcurcumin and structurally related hispolon analogues of curcumin exhibits enhanced prooxidant, anti-proliferative and anti-inflammatory activities in vitro. Biochem. Pharmacol. 2010;79:1658–1666. doi: 10.1016/j.bcp.2010.01.033. PubMed DOI PMC

Yang L.Y., Shen S.C., Cheng K.T., Subbaraju G.V., Chien C.C., Chen Y.C. Hispolon inhibition of inflammatory apoptosis through reduction of iNOS/NO production via HO-1 induction in macrophages. J. Ethnopharmacol. 2014;156:61–72. doi: 10.1016/j.jep.2014.07.054. PubMed DOI

Wu M.S., Chien C.C., Cheng K.T., Subbaraju G.V., Chen Y.C. Hispolon suppresses LPS- or LTA-induced iNOS/NO production and apoptosis in BV-2 microglial cells. Am. J. Chin. Med. 2017;45:1649–1666. doi: 10.1142/S0192415X17500896. PubMed DOI

Sarfraz A., Rasul A., Sarfraz I., Shah M.A., Hussain G., Shafiq N., Masood M., Adem Ş., Sarker S.D., Li X. Hispolon: A natural polyphenol and emerging cancer killer by multiple cellular signaling pathways. Environ. Res. 2020;190:110017. doi: 10.1016/j.envres.2020.110017. PubMed DOI PMC

Chen Y.C., Chang H.Y., Deng J.S., Chen J.J., Huang S.S., Lin I.H., Kuo W.L., Chao W., Huang G.J. Hispolon from Phellinus linteus induces G0/G1 cell cycle arrest and apoptosis in NB4 human leukaemia cells. Am. J. Chin. Med. 2013;41:1439–1457. doi: 10.1142/S0192415X13500961. PubMed DOI

Hsin M.C., Hsieh Y.H., Wang P.H., Ko J.L., Hsin I.L., Yang S.F. Hispolon suppresses metastasis via autophagic degradation of cathepsin S in cervical cancer cells. Cell Death Dis. 2017;8:e3089. doi: 10.1038/cddis.2017.459. PubMed DOI PMC

Islam M.T., Ali E.S., Khan I.N., Shaw S., Uddin S.J., Rouf R., Dev S., Saravi S., Das N., Tripathi S., et al. Anticancer perspectives on the fungal-derived polyphenolic hispolon. Anticancer Agents Med. Chem. 2020;20:1636–1647. doi: 10.2174/1871520620666200619164947. PubMed DOI

Balaji N.V., Ramani M.V., Viana A.G., Sanglard L.P., White J., Mulabagal V., Lee C., Gana T.J., Egiebor N.O., Subbaraju G.V., et al. Design, synthesis and in vitro cell-based evaluation of the anti-cancer activities of hispolon analogs. Bioorg. Med. Chem. 2015;23:2148–2158. doi: 10.1016/j.bmc.2015.03.002. PubMed DOI PMC

Veeman M.T., Slusarski D.C., Kaykas A., Louie S.H., Moon R.T. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol. 2003;13:680–685. doi: 10.1016/S0960-9822(03)00240-9. PubMed DOI

Shtutman M., Zhurinsky J., Simcha I., Albanese C., D’Amico M., Pestell R., Ben-Ze’ev A. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc. Natl. Acad. Sci. USA. 1999;96:5522–5527. doi: 10.1073/pnas.96.10.5522. PubMed DOI PMC

He T.C., Sparks A.B., Rago C., Hermeking H., Zawel L., da Costa L.T., Morin P.J., Vogelstein B., Kinzler K.W. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–1512. doi: 10.1126/science.281.5382.1509. PubMed DOI

Lecarpentier Y., Schussler O., Hébert J.L., Vallée A. Multiple targets of the canonical WNT/β-catenin signaling in cancers. Front. Oncol. 2019;9:1248. doi: 10.3389/fonc.2019.01248. PubMed DOI PMC

Tward A.D., Jones K.D., Yant S., Cheung S.T., Fan S.T., Chen X., Kay M.A., Wang R., Bishop J.M. Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc. Natl. Acad. Sci. USA. 2007;104:14771–14776. doi: 10.1073/pnas.0706578104. PubMed DOI PMC

Guo W., Keckesova Z., Donaher J.L., Shibue T., Tischler V., Reinhardt F., Itzkovitz S., Noske A., Zürrer-Härdi U., Bell G., et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell. 2012;148:1015–1028. doi: 10.1016/j.cell.2012.02.008. PubMed DOI PMC

Lu T.L., Huang G.J., Wang H.J., Chen J.L., Hsu H.P., Lu T.J. Hispolon promotes MDM2 downregulation through chaperone-mediated autophagy. Biochem. Biophys. Res. Commun. 2010;398:26–31. doi: 10.1016/j.bbrc.2010.06.004. PubMed DOI

Tanaka N., Mashima T., Mizutani A., Sato A., Aoyama A., Gong B., Yoshida H., Muramatsu Y., Nakata K., Matsuura M., et al. APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer. Mol. Cancer Ther. 2017;16:752–762. doi: 10.1158/1535-7163.MCT-16-0578. PubMed DOI

Das D., Preet R., Mohapatra P., Satapathy S.R., Siddharth S., Tamir T., Jain V., Bharatam P.V., Wyatt M.D., Kundu C.N. 5-Fluorouracil mediated anti-cancer activity in colon cancer cells is through the induction of Adenomatous Polyposis Coli: Implication of the long-patch base excision repair pathway. DNA Repair (Amst) 2014;24:15–25. doi: 10.1016/j.dnarep.2014.10.006. PubMed DOI PMC

Ilyas M., Tomlinson I.P., Rowan A., Pignatelli M., Bodmer W.F. β-catenin mutations in cell lines established from human colorectal cancers. Proc. Natl. Acad. Sci. USA. 1997;94:10330–10334. doi: 10.1073/pnas.94.19.10330. PubMed DOI PMC

Xie H., Huang Z., Sadim M.S., Sun Z. Stabilized β-catenin extends thymocyte survival by up-regulating Bcl-xL. J. Immunol. 2005;175:7981–7988. doi: 10.4049/jimmunol.175.12.7981. PubMed DOI

Lu R., Qu Y., Ge J., Zhang L., Su Z., Pflugfelder S.C., Li D.Q. Transcription factor TCF4 maintains the properties of human corneal epithelial stem cells. Stem Cells. 2012;30:753–761. doi: 10.1002/stem.1032. PubMed DOI PMC

Wang Z., Havasi A., Gall J.M., Mao H., Schwartz J.H., Borkan S.C. β-catenin promotes survival of renal epithelial cells by inhibiting Bax. J. Am. Soc. Nephrol. 2009;20:1919–1928. doi: 10.1681/ASN.2009030253. PubMed DOI PMC

Siddique H.R., Parray A., Tarapore R.S., Wang L., Mukhtar H., Karnes R.J., Deng Y., Konety B.R., Saleem M. BMI1 polycomb group protein acts as a master switch for growth and death of tumor cells: Regulates TCF4-transcriptional factor-induced BCL2 signaling. PLoS ONE. 2013;8:e60664. doi: 10.1371/journal.pone.0060664. PubMed DOI PMC

Chen C., Lu Y., Liu J., Li L., Zhao N., Lin B. Genome-wide ChIP-seq analysis of TCF4 binding regions in colorectal cancer cells. Int. J. Clin. Exp. Med. 2014;7:4253–4259. PubMed PMC

Or C.R., Huang C.W., Chang C.C., Lai Y.C., Chen Y.J., Chang C.C. Obatoclax, a pan-bcl-2 inhibitor, downregulates survivin to induce apoptosis in human colorectal carcinoma cells via suppressing WNT/β-catenin signaling. Int. J. Mol. Sci. 2020;21:1773. doi: 10.3390/ijms21051773. PubMed DOI PMC

Cheng Y.P., Li S., Chuang W.L., Li C.H., Chen G.J., Chang C.C., Or C.H.R., Lin P.Y., Chang C.C. Blockade of STAT3 signaling contributes to anticancer effect of 5-acetyloxy-6,7,8,4’-tetramethoxyflavone, a tangeretin derivative, on human glioblastoma multiforme cells. Int. J. Mol. Sci. 2019;20:3366. doi: 10.3390/ijms20133366. PubMed DOI PMC

Ho T.F., Peng Y.T., Chuang S.M., Lin S.C., Feng B.L., Lu C.H., Yu W.J., Chang J.S., Chang C.C. Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines. Toxicol. Appl. Pharmacol. 2009;235:253–260. doi: 10.1016/j.taap.2008.12.009. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...