Numerical assessment of a soil moisture controlled wastewater SDI disposal system in Alabama Black Belt Prairie

. 2021 Jan ; 263 () : 128210. [epub] 20200902

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33297169

To promote the environmental sustainability of rural sanitation, a soil moisture controlled wastewater subsurface drip irrigation (SDI) dispersal system was field tested in the Black Belt Prairie of Alabama, USA. The soil moisture control strategy was designed to regulate wastewater disposal timing according to drain field conditions to prevent hydraulic overloading and corresponding environmental hazard. CW2D/HYDRUS simulation modeling was utilized to explore difficult-to-measure aspects of system performance. While the control system successfully adapted hydraulic loading rate to changing drain field conditions, saturated field conditions during the dormant season presented practical application challenges. The paired field experiment and simulation model demonstrate that soil biofilm growth was stimulated in the vicinity of drip emitters. Although biofilm growth is critical in maintaining adequate COD and NH4+-N removal efficiencies, the efficient removal of biodegradable COD itself by soil biofilm limits denitrification of formed NO3--N . Furthermore, stimulated soil biofilm growth can create soil clogging around drip emitters, which was discerned in the field experiment along with salt accumulation, both of which were verified by simulation. Comparable modeling of system performance in sand and clay media demonstrate that the placement of soil moisture sensors within the drain field can have pronounced impacts on system hydraulic performance, depending on the soil permeability. Overall, the soil moisture control strategy tested is shown as a viable supplemental technology to promote the environmental sustainability of rural sanitation systems.

Zobrazit více v PubMed

Ahmad I., Husain F.M. Wiley-Blackwell; USA: 2017. Biofilms in Plant and Soil Health.https://onlinelibrary.wiley.com/doi/book/10.1002/9781119246329 DOI

Berger A.W., Valenca R., Miao Y., Ravi S., Mahendra S., Mohanty S.K. Biochar increases nitrate removal capacity of woodchip biofilters during high-intensity rainfall. Water Res. 2019;165:115008. doi: 10.1016/j.watres.2019.115008. PubMed DOI

de Matos M.P., von Sperling M., de Matos A.T. Clogging in horizontal subsurface flow constructed wetlands: influencing factors, research methods and remediation techniques. Rev. Environ. Sci. Biotechnol. 2018;17:87–107. doi: 10.1007/s11157-018-9458-1. DOI

Duan R., Fedler C.B. Salt management for sustainable degraded water land application under changing climatic conditions. Environ. Sci. Technol. 2013;47(18):10113–10114. doi: 10.1021/es403619m. PubMed DOI

Fang D., Wu A., Huang L., Shen Q., Zhang Q., Jiang L., Ji F. Polymer substrate reshapes the microbial assemblage and metabolic patterns within a biofilm denitrification system. Chem. Eng. J. 2020;387:124128.

Food and Agricultural Organization (FAO) 2006. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements.http://www.fao.org/home/en/ FAO Irrigation and Drainage Paper 56.

General Assembly of the United Nations The human right to water and sanitation. Res. 2010 https://www.un.org/en/ga/ 64/292.

General Assembly of the United Nations The human rights to safe drinking water and sanitation. Res. 2015 https://www.un.org/en/ga/ 70/169.

He J., Dougherty M., Arriaga F.J., AbdelGadir A.H. Impact of a real-time controlled wastewater subsurface drip disposal system on the selected chemical properties of a vertisol. Environ. Technol. 2013;34(9–12):1341–1347. doi: 10.1080/09593330.2012.746737. PubMed DOI

He J., Dougherty M., Arriaga F.J., Fulton J.P., Wood C.W., Shaw J.N., Lange C.R. Short-term soil nutrient impact in a real-time drain field soil moisture–controlled SDI wastewater disposal system. Irrigat. Sci. 2013;31(1):59–67. doi: 10.1007/s00271-011-0292-2. DOI

He J., Dougherty M., Shaw J., Fulton J., Arriaga F. Hydraulic management of a soil moisture controlled SDI wastewater dispersal system in an Alabama Black Belt soil. J. Environ. Manag. 2011;92(10):2479–2485. PubMed

He J., Dougherty M., Zellmer R., Martin G. Assessing the status of onsite wastewater treatment systems in the Alabama Black Belt soil area. Environ. Eng. Sci. 2011;28(10):693–699. doi: 10.1089/ees.2011.0047. DOI

Henze M., Gujer W., Mino T., van Loosedrecht M. IWA Publishing; UK: 2000. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. DOI

Henze M., van loosdrecht M.C.M., Ekama G.A., Brdjianovic D. IWA Publishing; UK: 2008. Biological Wastewater Treatment: Principles, Modelling and Design. DOI

Islam S., Smith K.M. Routledge; 2019. Interdisciplinary Collaboration for Water Diplomacy: A Principled and Pragmatic Approach.https://www.routledge.com/

Jantrania A.R., Gross M.A. CRC Press; USA: 2006. Advanced Onsite Wastewater Systems Technologies.

Ji X., Ren J.Y., Ulgiati S. Towards urban-rural sustainable cooperation: models and policy implication. J. Clean. Prod. 2018;213:892–898.

Kaminsky J.A., Javernick-Will A.N. The internal social sustainability of sanitation infrastructure. Water Sci. Technol. 2014;48(17):10028–10035. doi: 10.1021/es501608pp. PubMed DOI

Katz S., Dosoretz C., Chen Y., Tarchitzky J. Fouling formation and chemical control in drip irrigation systems using treated wastewater. Irrigat. Sci. 2014;32(6):459–469. doi: 10.1007/s00271-014-0442-4. DOI

Langergraber G., Rousseau D.P.L., García J., Mena J. CWM1: a general model to describe biokinetic processes in subsurface flow constructed wetlands. Water Sci. Technol. 2009;59(9):1687. doi: 10.2166/wst.2009.131. PubMed DOI

Langergraber G., Šimůnek J. Modeling variably saturated water flow and multicomponent reactive transport in constructed wetlands. Vadose Zone J. 2005;4(4):924–938. doi: 10.2136/vzj2004.0166. DOI

Liu T., He X., Jia G., Xu J., Quan X., You S. Simultaneous nitrification and denitrification process using novel surface-modified suspended carriers for the treatment of real domestic wastewater. Chemosphere. 2020;247:125831. doi: 10.1016/j.chemosphere.2020.125831. PubMed DOI

Magalhães T.M., Tonetti A.L., Bueno D.A.C., Tonon D. Nitrification process modeling in intermittent sand filter applied for wastewater treatment. Ecol. Eng. 2016;93:18–23. doi: 10.1016/j.ecoleng.2016.05.003. DOI

Martí A.C., Pucher B., Hernández-Crespo C., Monerris M.M., Langergraber G. Numerical simulation of vertical flow wetlands with special emphasis on treatment performance during winter. Water Sci. Technol. 2018;78:2019–2026. doi: 10.2166/wst.2018.479. PubMed DOI

Natural Resources Conservation Service (NRCS) National Soil Survey Handbook. 1993. Part 620-soil interpretations rating guides.https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/

Nikkels M.J., Kumar S., Meinke H. Adaptive irrigation infrastructure-linking insights from human-water interactions and adaptive pathways. Curr. Opin. Env. Sust. 2019;40:37–42. doi: 10.1016/j.cosust.2019.09.001. DOI

Pan J., Yuan F., Yu L., Huang L., Fei H., Cheng F., Zhang Q. Performance of organics and nitrogen removal in subsurface wastewater infiltration systems by intermittent aeration and shunt distributing wastewater. Bioresour. Technol. 2016;211:774–778. doi: 10.1016/j.biortech.2016.03.133. PubMed DOI

Pan Y., Liu Y., Peng L., Ngo H.H., Guo W., Wei W., Wang D., Ni B.J. Substrate diffusion within biofilms significantly influencing the electron competition during denitrification. Environ. Sci. Technol. 2019;53:261–269. doi: 10.1021/acs.est.8b05476. PubMed DOI

Petitjean A., Forquet N., Boutin C. Oxygen profile and clogging in vertical flow sand filters for on-site wastewater treatment. J. Environ. Manag. 2016;170:15–20. doi: 10.1016/j.jenvman.2015.12.033. PubMed DOI

Pucher B., Ruiz H., Paing J.L., Chazarenc F., Molle P., Langergraber G. Using numerical simulation of a one stage vertical flow wetland to optimize the depth of a zeolite layer. Water Sci. Technol. 2017;75:650–658. doi: 10.2166/wst.2016.545. PubMed DOI

Raine S.R., Meyer W.S., Rassam D.W., Hutson J.L., Cook F.J. Soil–water and solute movement under precision irrigation: knowledge gaps for managing sustainable root zones. Irrigat. Sci. 2007;26(1):91–100. doi: 10.1007/s00271-007-0075-y. DOI

Roberts T., Lazarovitch N., Warrick A.W., Thompson T.L. Modeling salt accumulation with subsurface drip irrigation using HYDRUS-2D. Soil Sci. Soc. Am. J. 2009;73(1):233–240. doi: 10.2136/sssaj2008.0033. DOI

Samsó R., García J. BIO_PORE, a mathematical model to simulate biofilm growth and water quality improvement in porous media: application and calibration for constructed wetlands. Ecol. Eng. 2013;54:116–127.

Samsó R., García J. The Cartridge Theory: a description of the functioning of horizontal subsurface flow constructed wetlands for wastewater treatment, based on modelling results. Sci. Total Environ. 2014;473–474:651–658. doi: 10.1016/j.scitotenv.2013.12.070. PubMed DOI

Somlai C., Knappe J., Gill L. Spatial and temporal variation of CO2 and CH4 emissions from a septic tank soakaway. Sci. Total Environ. 2019;679:185–195. doi: 10.1016/j.scitotenv.2019.04.449. PubMed DOI

Thakur I.S., Medhil K. Nitrification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: challenges and opportunities. Bioresour. Technol. 2019;282:502–513. PubMed

Truhlar A.M., Ortega K.L., Walter M.T. Seasonal and diel variation in greenhouse gas emissions from septic system leach fields. Int. J. Environ. Sci. Technol. 2019;16(10):6043–6052. doi: 10.1007/s13762-019-02314-6. DOI

Uggetti E., García J., Lind S.E., Martikainen P.J., Ferrer I. Quantification of greenhouse gas emissions from sludge treatment wetlands. Water Res. 2012;46(6):1755–1762. doi: 10.1016/j.watres.2011.12.049. PubMed DOI

van Loosdrecht M.C.M., Lopez-Vazquez C.M., Meijer S.C.F., Hooijmans C.M., Brdjanovic D. Twenty-five years of ASM1: past, present and future of wastewater treatment modelling. J. Hydroinf. 2015;17(5):697–718. doi: 10.2166/hydro.2015.006. DOI

Wang S., Wang W., Liu L., Zhuang L., Zhao S., Su Y., Li Y., Wang M., Wang C., Xu L., Zhu G. Microbial nitrogen cycle hotspots in the plant-bed/ditch system of a constructed wetland with N2O mitigation. Environ. Sci. Technol. 2018;52(11):6226–6236. doi: 10.1021/acs.est.7b04925. PubMed DOI

Wedgworth J.C., Brown J. Limited access to safe drinking water and sanitation in Alabama’s Black Belt: a cross-sectional case study. Water Qual. Expos. Hea. 2013;5(2):69–74. doi: 10.1007/s12403-013-0088-0. DOI

Yan L., Liu S., Liu Q., Zhang M., Liu Y., Wen Y., Chen Z., Zhang Y., Yang Q. Improved performance of simultaneous nitrification and denitrification via nitrite in an oxygen-limited SBR by alternating the DO. Bioresour. Technol. 2019;275:153–162. doi: 10.1016/j.biortech.2018.12.054. PubMed DOI

Yeo C., Kaushal S., Yeo D. Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol. 2020;5(4):335–337. doi: 10.1016/S2468-1253(20)30048-0. PubMed DOI PMC

Yu Y., Shihong G., Xu D., Jiandong W., Ma X. Effects of Treflan injection on winter wheat growth and root clogging of subsurface drippers. Agric. Water Manag. 2010;97(5):723–730. doi: 10.1016/j.agwat.2010.01.003. DOI

Zhang X., Zhang J., Hu Z., Xie H., Wei D., Li W. Effect of influent COD/N ratio on performance and N2O emission of partial nitrification treating high-strength nitrogen wastewater. RSC Adv. 2015;5(75):61345–61353. doi: 10.1039/C5RA08364H. DOI

Zhi W., Ji G. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints. Water Res. 2014;64:32–41. doi: 10.1016/j.watres.2014.06.035. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...