Numerical assessment of a soil moisture controlled wastewater SDI disposal system in Alabama Black Belt Prairie
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33297169
PubMed Central
PMC7467105
DOI
10.1016/j.chemosphere.2020.128210
PII: S0045-6535(20)32405-X
Knihovny.cz E-zdroje
- Klíčová slova
- Biofilm, CW2D, HYDRUS, Modeling, SDI, Wastewater treatment,
- MeSH
- odpad tekutý - odstraňování MeSH
- odpadní voda * MeSH
- pastviny MeSH
- půda * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Alabama MeSH
- Názvy látek
- odpadní voda * MeSH
- půda * MeSH
To promote the environmental sustainability of rural sanitation, a soil moisture controlled wastewater subsurface drip irrigation (SDI) dispersal system was field tested in the Black Belt Prairie of Alabama, USA. The soil moisture control strategy was designed to regulate wastewater disposal timing according to drain field conditions to prevent hydraulic overloading and corresponding environmental hazard. CW2D/HYDRUS simulation modeling was utilized to explore difficult-to-measure aspects of system performance. While the control system successfully adapted hydraulic loading rate to changing drain field conditions, saturated field conditions during the dormant season presented practical application challenges. The paired field experiment and simulation model demonstrate that soil biofilm growth was stimulated in the vicinity of drip emitters. Although biofilm growth is critical in maintaining adequate COD and NH4+-N removal efficiencies, the efficient removal of biodegradable COD itself by soil biofilm limits denitrification of formed NO3--N . Furthermore, stimulated soil biofilm growth can create soil clogging around drip emitters, which was discerned in the field experiment along with salt accumulation, both of which were verified by simulation. Comparable modeling of system performance in sand and clay media demonstrate that the placement of soil moisture sensors within the drain field can have pronounced impacts on system hydraulic performance, depending on the soil permeability. Overall, the soil moisture control strategy tested is shown as a viable supplemental technology to promote the environmental sustainability of rural sanitation systems.
College of Resources and Environment Huazhong Agricultural University Wuhan 430070 China
Department of Biosystems Engineering Auburn University Auburn AL 36849 USA
Zobrazit více v PubMed
Ahmad I., Husain F.M. Wiley-Blackwell; USA: 2017. Biofilms in Plant and Soil Health.https://onlinelibrary.wiley.com/doi/book/10.1002/9781119246329 DOI
Berger A.W., Valenca R., Miao Y., Ravi S., Mahendra S., Mohanty S.K. Biochar increases nitrate removal capacity of woodchip biofilters during high-intensity rainfall. Water Res. 2019;165:115008. doi: 10.1016/j.watres.2019.115008. PubMed DOI
de Matos M.P., von Sperling M., de Matos A.T. Clogging in horizontal subsurface flow constructed wetlands: influencing factors, research methods and remediation techniques. Rev. Environ. Sci. Biotechnol. 2018;17:87–107. doi: 10.1007/s11157-018-9458-1. DOI
Duan R., Fedler C.B. Salt management for sustainable degraded water land application under changing climatic conditions. Environ. Sci. Technol. 2013;47(18):10113–10114. doi: 10.1021/es403619m. PubMed DOI
Fang D., Wu A., Huang L., Shen Q., Zhang Q., Jiang L., Ji F. Polymer substrate reshapes the microbial assemblage and metabolic patterns within a biofilm denitrification system. Chem. Eng. J. 2020;387:124128.
Food and Agricultural Organization (FAO) 2006. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements.http://www.fao.org/home/en/ FAO Irrigation and Drainage Paper 56.
General Assembly of the United Nations The human right to water and sanitation. Res. 2010 https://www.un.org/en/ga/ 64/292.
General Assembly of the United Nations The human rights to safe drinking water and sanitation. Res. 2015 https://www.un.org/en/ga/ 70/169.
He J., Dougherty M., Arriaga F.J., AbdelGadir A.H. Impact of a real-time controlled wastewater subsurface drip disposal system on the selected chemical properties of a vertisol. Environ. Technol. 2013;34(9–12):1341–1347. doi: 10.1080/09593330.2012.746737. PubMed DOI
He J., Dougherty M., Arriaga F.J., Fulton J.P., Wood C.W., Shaw J.N., Lange C.R. Short-term soil nutrient impact in a real-time drain field soil moisture–controlled SDI wastewater disposal system. Irrigat. Sci. 2013;31(1):59–67. doi: 10.1007/s00271-011-0292-2. DOI
He J., Dougherty M., Shaw J., Fulton J., Arriaga F. Hydraulic management of a soil moisture controlled SDI wastewater dispersal system in an Alabama Black Belt soil. J. Environ. Manag. 2011;92(10):2479–2485. PubMed
He J., Dougherty M., Zellmer R., Martin G. Assessing the status of onsite wastewater treatment systems in the Alabama Black Belt soil area. Environ. Eng. Sci. 2011;28(10):693–699. doi: 10.1089/ees.2011.0047. DOI
Henze M., Gujer W., Mino T., van Loosedrecht M. IWA Publishing; UK: 2000. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. DOI
Henze M., van loosdrecht M.C.M., Ekama G.A., Brdjianovic D. IWA Publishing; UK: 2008. Biological Wastewater Treatment: Principles, Modelling and Design. DOI
Islam S., Smith K.M. Routledge; 2019. Interdisciplinary Collaboration for Water Diplomacy: A Principled and Pragmatic Approach.https://www.routledge.com/
Jantrania A.R., Gross M.A. CRC Press; USA: 2006. Advanced Onsite Wastewater Systems Technologies.
Ji X., Ren J.Y., Ulgiati S. Towards urban-rural sustainable cooperation: models and policy implication. J. Clean. Prod. 2018;213:892–898.
Kaminsky J.A., Javernick-Will A.N. The internal social sustainability of sanitation infrastructure. Water Sci. Technol. 2014;48(17):10028–10035. doi: 10.1021/es501608pp. PubMed DOI
Katz S., Dosoretz C., Chen Y., Tarchitzky J. Fouling formation and chemical control in drip irrigation systems using treated wastewater. Irrigat. Sci. 2014;32(6):459–469. doi: 10.1007/s00271-014-0442-4. DOI
Langergraber G., Rousseau D.P.L., García J., Mena J. CWM1: a general model to describe biokinetic processes in subsurface flow constructed wetlands. Water Sci. Technol. 2009;59(9):1687. doi: 10.2166/wst.2009.131. PubMed DOI
Langergraber G., Šimůnek J. Modeling variably saturated water flow and multicomponent reactive transport in constructed wetlands. Vadose Zone J. 2005;4(4):924–938. doi: 10.2136/vzj2004.0166. DOI
Liu T., He X., Jia G., Xu J., Quan X., You S. Simultaneous nitrification and denitrification process using novel surface-modified suspended carriers for the treatment of real domestic wastewater. Chemosphere. 2020;247:125831. doi: 10.1016/j.chemosphere.2020.125831. PubMed DOI
Magalhães T.M., Tonetti A.L., Bueno D.A.C., Tonon D. Nitrification process modeling in intermittent sand filter applied for wastewater treatment. Ecol. Eng. 2016;93:18–23. doi: 10.1016/j.ecoleng.2016.05.003. DOI
Martí A.C., Pucher B., Hernández-Crespo C., Monerris M.M., Langergraber G. Numerical simulation of vertical flow wetlands with special emphasis on treatment performance during winter. Water Sci. Technol. 2018;78:2019–2026. doi: 10.2166/wst.2018.479. PubMed DOI
Natural Resources Conservation Service (NRCS) National Soil Survey Handbook. 1993. Part 620-soil interpretations rating guides.https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/
Nikkels M.J., Kumar S., Meinke H. Adaptive irrigation infrastructure-linking insights from human-water interactions and adaptive pathways. Curr. Opin. Env. Sust. 2019;40:37–42. doi: 10.1016/j.cosust.2019.09.001. DOI
Pan J., Yuan F., Yu L., Huang L., Fei H., Cheng F., Zhang Q. Performance of organics and nitrogen removal in subsurface wastewater infiltration systems by intermittent aeration and shunt distributing wastewater. Bioresour. Technol. 2016;211:774–778. doi: 10.1016/j.biortech.2016.03.133. PubMed DOI
Pan Y., Liu Y., Peng L., Ngo H.H., Guo W., Wei W., Wang D., Ni B.J. Substrate diffusion within biofilms significantly influencing the electron competition during denitrification. Environ. Sci. Technol. 2019;53:261–269. doi: 10.1021/acs.est.8b05476. PubMed DOI
Petitjean A., Forquet N., Boutin C. Oxygen profile and clogging in vertical flow sand filters for on-site wastewater treatment. J. Environ. Manag. 2016;170:15–20. doi: 10.1016/j.jenvman.2015.12.033. PubMed DOI
Pucher B., Ruiz H., Paing J.L., Chazarenc F., Molle P., Langergraber G. Using numerical simulation of a one stage vertical flow wetland to optimize the depth of a zeolite layer. Water Sci. Technol. 2017;75:650–658. doi: 10.2166/wst.2016.545. PubMed DOI
Raine S.R., Meyer W.S., Rassam D.W., Hutson J.L., Cook F.J. Soil–water and solute movement under precision irrigation: knowledge gaps for managing sustainable root zones. Irrigat. Sci. 2007;26(1):91–100. doi: 10.1007/s00271-007-0075-y. DOI
Roberts T., Lazarovitch N., Warrick A.W., Thompson T.L. Modeling salt accumulation with subsurface drip irrigation using HYDRUS-2D. Soil Sci. Soc. Am. J. 2009;73(1):233–240. doi: 10.2136/sssaj2008.0033. DOI
Samsó R., García J. BIO_PORE, a mathematical model to simulate biofilm growth and water quality improvement in porous media: application and calibration for constructed wetlands. Ecol. Eng. 2013;54:116–127.
Samsó R., García J. The Cartridge Theory: a description of the functioning of horizontal subsurface flow constructed wetlands for wastewater treatment, based on modelling results. Sci. Total Environ. 2014;473–474:651–658. doi: 10.1016/j.scitotenv.2013.12.070. PubMed DOI
Somlai C., Knappe J., Gill L. Spatial and temporal variation of CO2 and CH4 emissions from a septic tank soakaway. Sci. Total Environ. 2019;679:185–195. doi: 10.1016/j.scitotenv.2019.04.449. PubMed DOI
Thakur I.S., Medhil K. Nitrification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: challenges and opportunities. Bioresour. Technol. 2019;282:502–513. PubMed
Truhlar A.M., Ortega K.L., Walter M.T. Seasonal and diel variation in greenhouse gas emissions from septic system leach fields. Int. J. Environ. Sci. Technol. 2019;16(10):6043–6052. doi: 10.1007/s13762-019-02314-6. DOI
Uggetti E., García J., Lind S.E., Martikainen P.J., Ferrer I. Quantification of greenhouse gas emissions from sludge treatment wetlands. Water Res. 2012;46(6):1755–1762. doi: 10.1016/j.watres.2011.12.049. PubMed DOI
van Loosdrecht M.C.M., Lopez-Vazquez C.M., Meijer S.C.F., Hooijmans C.M., Brdjanovic D. Twenty-five years of ASM1: past, present and future of wastewater treatment modelling. J. Hydroinf. 2015;17(5):697–718. doi: 10.2166/hydro.2015.006. DOI
Wang S., Wang W., Liu L., Zhuang L., Zhao S., Su Y., Li Y., Wang M., Wang C., Xu L., Zhu G. Microbial nitrogen cycle hotspots in the plant-bed/ditch system of a constructed wetland with N2O mitigation. Environ. Sci. Technol. 2018;52(11):6226–6236. doi: 10.1021/acs.est.7b04925. PubMed DOI
Wedgworth J.C., Brown J. Limited access to safe drinking water and sanitation in Alabama’s Black Belt: a cross-sectional case study. Water Qual. Expos. Hea. 2013;5(2):69–74. doi: 10.1007/s12403-013-0088-0. DOI
Yan L., Liu S., Liu Q., Zhang M., Liu Y., Wen Y., Chen Z., Zhang Y., Yang Q. Improved performance of simultaneous nitrification and denitrification via nitrite in an oxygen-limited SBR by alternating the DO. Bioresour. Technol. 2019;275:153–162. doi: 10.1016/j.biortech.2018.12.054. PubMed DOI
Yeo C., Kaushal S., Yeo D. Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol. 2020;5(4):335–337. doi: 10.1016/S2468-1253(20)30048-0. PubMed DOI PMC
Yu Y., Shihong G., Xu D., Jiandong W., Ma X. Effects of Treflan injection on winter wheat growth and root clogging of subsurface drippers. Agric. Water Manag. 2010;97(5):723–730. doi: 10.1016/j.agwat.2010.01.003. DOI
Zhang X., Zhang J., Hu Z., Xie H., Wei D., Li W. Effect of influent COD/N ratio on performance and N2O emission of partial nitrification treating high-strength nitrogen wastewater. RSC Adv. 2015;5(75):61345–61353. doi: 10.1039/C5RA08364H. DOI
Zhi W., Ji G. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints. Water Res. 2014;64:32–41. doi: 10.1016/j.watres.2014.06.035. PubMed DOI