• This record comes from PubMed

Twinning-Detwinning in Pre-Compressed and Thermally Treated ZX10 and ZN10 Alloys

. 2020 Dec 08 ; 13 (24) : . [epub] 20201208

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
19-22604S Grantová Agentura České Republiky
the Operational Programme Research, Development and Education, grant CZ.02.1.01/0.0/0.0/16_013/0001794 Ministerstvo Školství, Mládeže a Tělovýchovy

The deformation behavior of extruded Mg alloys with a Ca or Nd addition (up to 0.5 wt.%) is addressed with respect to a specified thermo-mechanical treatment, realized by pre-compression and subsequent heat treatment at intermediate temperature. The twinning-detwinning process is discussed with respect to the initial texture and applied heat treatment. Isothermal aging leads to precipitation and segregation along twin boundaries and dislocations in the pre-compressed Mg alloys, and, thus, variation in the mobility of twin boundaries (TB) is observed in the investigated alloys. Despite individual scenarios of TB mobility in particular grains, in general, the same TB mobility modes are observed in the alloys independently on Ca or Nd alloying. The microstructure development, particularly the twin volume fraction and the mobility of tensile {10-12} twin boundaries, is tracked using scanning electron microscopy, including backscattered electron (BSE) imaging and electron backscatter diffraction (EBSD) mapping.

See more in PubMed

Christian J.W., Mahajan S. Deformation twinning. Prog. Mater. Sci. 1995;39:1–157. doi: 10.1016/0079-6425(94)00007-7. DOI

Yoo M.H. Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Trans. A. 1981;12:409–418. doi: 10.1007/BF02648537. DOI

Wang Y.N., Huang J.C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy. Acta Mater. 2007;55:897–905.

He J., Liu T., Xu S., Zhang Y. The effects of compressive pre-deformation on yield asymmetry in hot-extruded Mg–3Al–1Zn alloy. Mater. Sci. Eng. A. 2013;579:1–8.

Kelley E.W., Hosford W.F. The deformation characteristics of textured magnesium. Trans. AIME. 1968;242:654–661.

Barnett M.R., Keshavarz Z., Beer A.G., Atwell D. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater. 2004;52:5093–5103.

Sarker D., Chen D.L. Dependence of compressive deformation on pre-strain and loading direction in an extruded magnesium alloy: Texture, twinning and de-twinning. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2014;596:134–144.

Bohlen J., Dobron P., Swiostek J., Letzig D., Chmelik F., Lukac P., Kainer K.U. On the influence of the grain size and solute content on the AE response of magnesium alloys tested in tension and compression. Mater. Sci. Eng. A. 2007;462:302–306. doi: 10.1016/j.msea.2006.02.470. DOI

Dobroň P., Drozdenko D., Horváth Fekete K., Olejňák J., Bohlen J. Grain Size-Related Strengthening and Softening of a Precompressed and Heat-Treated Mg–Zn–Ca Alloy. Materials. 2020;13:351. PubMed PMC

Xin Y., Zhou X., Lv L., Liu Q. The influence of a secondary twin on the detwinning deformation of a primary twin in Mg–3Al–1Zn alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2014;606:81–91. doi: 10.1016/j.msea.2014.03.068. DOI

Cui Y., Li Y., Wang Z., Ding X., Koizumi Y., Bian H., Lin L., Chiba A. Impact of solute elements on detwinning in magnesium and its alloys. Int. J. Plast. 2017;91:134–159. doi: 10.1016/j.ijplas.2016.09.014. DOI

Cui Y., Bian H., Li Y., Zhao Y., Aoyagi K., Chiba A. Impacts of pre-strain on twin boundary mobility of magnesium. J. Alloys Compd. 2020;816:152496. doi: 10.1016/j.jallcom.2019.152496. DOI

Cui Y., Li Y., Wang Z., Lei Q., Koizumi Y., Chiba A. Regulating twin boundary mobility by annealing in magnesium and its alloys. Int. J. Plast. 2017;99:1–18. doi: 10.1016/j.ijplas.2017.08.002. DOI

Cui Y., Li J., Li Y., Koizumi Y., Chiba A. Damping capacity of pre-compressed magnesium alloys after annealing. Mater. Sci. Eng. A. 2017;708:104–109. doi: 10.1016/j.msea.2017.09.096. DOI

Dobron P., Drozdenko D., Olejnak J., Hegedus M., Horvath K., Vesely J., Bohlen J., Letzig D. Compressive yield stress improvement using thermomechanical treatment of extruded Mg-Zn-Ca alloy. Mater. Sci. Eng. A. 2018;730:401–409. doi: 10.1016/j.msea.2018.06.026. DOI

Zhao L., Xin Y., Guo F., Yu H., Liu Q. A new annealing hardening mechanism in pre-twinned Mg–3Al–1Zn alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2016;654:344–351. doi: 10.1016/j.msea.2015.12.046. DOI

Song B., Guo N., Liu T., Yang Q. Improvement of formability and mechanical properties of magnesium alloys via pre-twinning: A review. Mater. Design. 2014;62:352–360. doi: 10.1016/j.matdes.2014.05.034. DOI

Lou X.Y., Li M., Boger R.K., Agnew S.R., Wagoner R.H. Hardening evolution of AZ31B Mg sheet. Int. J. Plast. 2007;23:44–86. doi: 10.1016/j.ijplas.2006.03.005. DOI

Chapuis A., Xin Y.C., Zhou X.J., Liu Q. {10-12} Twin variants selection mechanisms during twinning, re-twinning and detwinning. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2014;612:431–439. doi: 10.1016/j.msea.2014.06.088. DOI

Drozdenko D., Bohlen J., Yi S., Minárik P., Chmelík F., Dobroň P. Investigating a twinning–detwinning process in wrought Mg alloys by the acoustic emission technique. Acta Mater. 2016;110:103–113. doi: 10.1016/j.actamat.2016.03.013. DOI

Vinogradov A., Vasilev E., Linderov M., Merson D. In situ observations of the kinetics of twinning–detwinning and dislocation slip in magnesium. Mater. Sci. Eng. A. 2016;676:351–360. doi: 10.1016/j.msea.2016.09.004. DOI

Molodov K.D., Al-Samman T., Molodov D.A. Profuse slip transmission across twin boundaries in magnesium. Acta Mater. 2017;124:397–409. doi: 10.1016/j.actamat.2016.11.022. DOI

Bohlen J., Dobron P., Nascimento L., Parfenenko K., Chmelik F., Letzig D. The Effect of Reversed Loading Conditions on the Mechanical Behaviour of Extruded Magnesium Alloy AZ31. Acta Phys. Pol. A. 2012;122:444–449. doi: 10.12693/APhysPolA.122.444. DOI

Dong H., Pan F., Jiang B., Li R., Huang X. Mechanical properties and deformation behaviors of hexagonal Mg-Li alloys. Mater. Des. 2015;65:42–49. doi: 10.1016/j.matdes.2014.08.033. DOI

Wu W., Liaw P.K., An K. Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction. Acta Mater. 2015;85:343–353. doi: 10.1016/j.actamat.2014.11.030. DOI

Drozdenko D., Čapek J., Clausen B., Vinogradov A., Máthis K. Influence of the solute concentration on the anelasticity in Mg-Al alloys: A multiple-approach study. J. Alloys Compd. 2019 doi: 10.1016/j.jallcom.2019.01.358. DOI

Wang L., Huang G., Quan Q., Bassani P., Mostaed E., Vedani M., Pan F. The effect of twinning and detwinning on the mechanical property of AZ31 extruded magnesium alloy during strain-path changes. Mater. Des. 2014;63:177–184. doi: 10.1016/j.matdes.2014.05.056. DOI

Sarker D., Chen D.L. Detwinning and strain hardening of an extruded magnesium alloy during compression. Scr. Mater. 2012;67:165–168. doi: 10.1016/j.scriptamat.2012.04.007. DOI

Proust G., Tomé C.N., Jain A., Agnew S.R. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast. 2009;25:861–880. doi: 10.1016/j.ijplas.2008.05.005. DOI

Wang H., Wu P.D., Tomé C.N., Wang J. A constitutive model of twinning and detwinning for hexagonal close packed polycrystals. Mater. Sci. Eng. A. 2012;555:93–98. doi: 10.1016/j.msea.2012.06.038. DOI

Wang H., Wu P.D., Wang J., Tomé C.N. A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms. Int. J. Plast. 2013;49:36–52. doi: 10.1016/j.ijplas.2013.02.016. DOI

Wang J., Beyerlein I.J., Tomé C.N. Reactions of lattice dislocations with grain boundaries in Mg: Implications on the micro scale from atomic-scale calculations. Int. J. Plast. 2014;56:156–172. doi: 10.1016/j.ijplas.2013.11.009. DOI

Cui Y., Li Y., Sun S., Bian H., Huang H., Wang Z., Koizumi Y., Chiba A. Enhanced damping capacity of magnesium alloys by tensile twin boundaries. Scr. Mater. 2015;101:8–11. doi: 10.1016/j.scriptamat.2015.01.002. DOI

Dobron P., Chmelik F., Yi S.B., Parfenenko K., Letzig D., Bohlen J. Grain size effects on deformation twinning in an extruded magnesium alloy tested in compression. Scr. Mater. 2011;65:424–427. doi: 10.1016/j.scriptamat.2011.05.027. DOI

Beyerlein I.J., Capolungo L., Marshall P.E., McCabe R.J., Tome C.N. Statistical analyses of deformation twinning in magnesium. Philos. Mag. 2010;90:2161–2190. doi: 10.1080/14786431003630835. DOI

Stanford N., Marceau R.K.W., Barnett M.R. The effect of high yttrium solute concentration on the twinning behaviour of magnesium alloys. Acta Mater. 2015;82:447–456. doi: 10.1016/j.actamat.2014.09.022. DOI

Gharghouri M.A., Weatherly G.C., Embury J.D., Root J. Study of the mechanical properties of Mg-7.7at.% Al by in-situ neutron diffraction. Philos. Mag. A. 1999;79:1671–1695. doi: 10.1080/01418619908210386. DOI

Gharghouri M.A., Weatherly G.C., Embury J.D. The interaction of twins and precipitates in a Mg-7.7 at.% Al alloy. Philos. Mag. A. 1998;78:1137–1149. doi: 10.1080/01418619808239980. DOI

Jain J., Cizek P., Poole W.J., Barnett M.R. The role of back stress caused by precipitates on twinning in a Mg–6Zn alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2015;647:66–73. doi: 10.1016/j.msea.2015.08.091. DOI

Stanford N., Barnett M.R. Effect of particles on the formation of deformation twins in a magnesium-based alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2009;516:226–234. doi: 10.1016/j.msea.2009.04.001. DOI

Park S.H., Lee J.H., Huh Y.-H., Hong S.-G. Enhancing the effect of texture control using {10−12} twins by retarding detwinning activity in rolled Mg–3Al–1Zn alloy. Scr. Mater. 2013;69:797–800. doi: 10.1016/j.scriptamat.2013.09.002. DOI

Xin Y., Zhang Y., Yu H., Chen H., Liu Q. The different effects of solute segregation at twin boundaries on mechanical behaviors of twinning and detwinning. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2015;644:365–373. doi: 10.1016/j.msea.2015.07.049. DOI

Nie J.F., Muddle B.C. Precipitation hardening of Mg-Ca(-Zn) alloys. Scr. Mater. 1997;37:1475–1481. doi: 10.1016/S1359-6462(97)00294-7. DOI

Robson J.D., Stanford N., Barnett M.R. Effect of particles in promoting twin nucleation in a Mg-5 wt.% Zn alloy. Scr. Mater. 2010;63:823–826. doi: 10.1016/j.scriptamat.2010.06.026. DOI

Minárik P., Jablonská E., Král R., Lipov J., Ruml T., Blawert C., Hadzima B., Chmelík F. Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy. Mater. Sci. Eng. C. 2017;73:736–742. doi: 10.1016/j.msec.2016.12.120. PubMed DOI

Nie J.F., Zhu Y.M., Liu J.Z., Fang X.Y. Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries. Science. 2013;340:957–960. doi: 10.1126/science.1229369. PubMed DOI

Xin Y., Zhou X., Chen H., Nie J.-F., Zhang H., Zhang Y., Liu Q. Annealing hardening in detwinning deformation of Mg–3Al–1Zn alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2014;594:287–291. doi: 10.1016/j.msea.2013.11.080. DOI

Zeng Z.R., Zhu Y.M., Bian M.Z., Xu S.W., Davies C.H.J., Birbilis N., Nie J.F. Annealing strengthening in a dilute Mg–Zn–Ca sheet alloy. Scr. Mater. 2015;107:127–130. doi: 10.1016/j.scriptamat.2015.06.002. DOI

Drozdenko D., Dobroň P., Yi S., Horváth K., Letzig D., Bohlen J. Mobility of pinned twin boundaries during mechanical loading of extruded binary Mg-1Zn alloy. Mater. Charact. 2018;139:81–88. doi: 10.1016/j.matchar.2018.02.034. DOI

Nie J.-F. Precipitation and Hardening in Magnesium Alloys. Metall. Mater. Trans. A. 2012;43:3891–3939. doi: 10.1007/s11661-012-1217-2. DOI

Minárik P., Drozdenko D., Zemková M., Veselý J., Čapek J., Bohlen J., Dobroň P. Advanced analysis of the deformation mechanisms in extruded magnesium alloys containing neodymium or yttrium. Mater. Sci. Eng. A. 2019;759:455–464. doi: 10.1016/j.msea.2019.05.069. DOI

Wang W.Z., Wu D., Chen R.S., Qi Y., Ye H.Q., Yang Z.Q. Revisiting the role of Zr micro-alloying in a Mg-Nd-Zn alloy. J. Alloys Compd. 2020;832:155016. doi: 10.1016/j.jallcom.2020.155016. DOI

Sanaty-Zadeh A., Xia X., Luo A.A., Stone D.S. Precipitation evolution and kinetics in a magnesium-neodymium-zinc alloy. J. Alloys Compd. 2014;583:434–440. doi: 10.1016/j.jallcom.2013.08.198. DOI

Stráská J., Minárik P., Šašek S., Veselý J., Bohlen J., Král R., Kubásek J. Texture Hardening Observed in Mg–Zn–Nd Alloy Processed by Equal-Channel Angular Pressing (ECAP) Metals. 2020;10:35. doi: 10.3390/met10010035. DOI

Drozdenko D., Bohlen J., Chmelík F., Lukáč P., Dobroň P. Acoustic emission study on the activity of slip and twin mechanisms during compression testing of magnesium single crystals. Mater. Sci. Eng. A. 2016;650:20–27. doi: 10.1016/j.msea.2015.10.033. DOI

Wang Q., Liu L., Jiang B., Fu J., Tang A., Jiang Z., Sheng H., Zhang D., Huang G., Pan F. Twin nucleation, twin growth and their effects on annealing strengths of Mg–Al–Zn–Mn sheets experienced different pre-compressive strains. J. Alloys Compd. 2020;815:152310. doi: 10.1016/j.jallcom.2019.152310. DOI

Teng J., Gong X., Li Y., Nie Y. Influence of aging on twin boundary strengthening in magnesium alloys. Mater. Sci. Eng. A. 2018;715:137–143. doi: 10.1016/j.msea.2017.12.110. DOI

Liu Y., Li N., Shao S., Gong M., Wang J., McCabe R.J., Jiang Y., Tomé C.N. Characterizing the boundary lateral to the shear direction of deformation twins in magnesium. Nat. Commun. 2016;7:11577. doi: 10.1038/ncomms11577. PubMed DOI PMC

El Kadiri H., Barrett C.D., Wang J., Tomé C.N. Why are {101¯2} twins profuse in magnesium? Acta Mater. 2015;85:354–361. doi: 10.1016/j.actamat.2014.11.033. DOI

Liu Y., Tang P.Z., Gong M.Y., McCabe R.J., Wang J., Tomé C.N. Three-dimensional character of the deformation twin in magnesium. Nat. Commun. 2019;10:3308. doi: 10.1038/s41467-019-10573-7. PubMed DOI PMC

Wang F., Hazeli K., Molodov K.D., Barrett C.D., Al-Samman T., Molodov D.A., Kontsos A., Ramesh K.T., El Kadiri H., Agnew S.R. Characteristic dislocation substructure in 101¯2 twins in hexagonal metals. Scr. Mater. 2018;143:81–85. doi: 10.1016/j.scriptamat.2017.09.015. DOI

Gong M., Hirth J.P., Liu Y., Shen Y., Wang J. Interface structures and twinning mechanisms of twins in hexagonal metals. Mater. Res. Lett. 2017;5:449–464. doi: 10.1080/21663831.2017.1336496. DOI

Robson J.D., Stanford N., Barnett M.R. Effect of Precipitate Shape and Habit on Mechanical Asymmetry in Magnesium Alloys. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2013;44:2984–2995. doi: 10.1007/s11661-012-1466-0. DOI

Koike J., Fujiyama N., Ando D., Sutou Y. Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys. Scr. Mater. 2010;63:747–750. doi: 10.1016/j.scriptamat.2010.03.021. DOI

Yu Q., Wang J., Jiang Y., McCabe R.J., Li N., Tomé C.N. Twin–twin interactions in magnesium. Acta Mater. 2014;77:28–42. doi: 10.1016/j.actamat.2014.05.030. DOI

Čapek J., Máthis K., Clausen B., Stráská J., Beran P., Lukáš P. Study of the loading mode dependence of the twinning in random textured cast magnesium by acoustic emission and neutron diffraction methods. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2014;602:25–32. doi: 10.1016/j.msea.2014.02.051. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...