Twinning-Detwinning in Pre-Compressed and Thermally Treated ZX10 and ZN10 Alloys
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-22604S
Grantová Agentura České Republiky
the Operational Programme Research, Development and Education, grant CZ.02.1.01/0.0/0.0/16_013/0001794
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33302586
PubMed Central
PMC7764377
DOI
10.3390/ma13245605
PII: ma13245605
Knihovny.cz E-resources
- Keywords
- detwinning, magnesium alloys, precipitation, twin boundaries, twinning,
- Publication type
- Journal Article MeSH
The deformation behavior of extruded Mg alloys with a Ca or Nd addition (up to 0.5 wt.%) is addressed with respect to a specified thermo-mechanical treatment, realized by pre-compression and subsequent heat treatment at intermediate temperature. The twinning-detwinning process is discussed with respect to the initial texture and applied heat treatment. Isothermal aging leads to precipitation and segregation along twin boundaries and dislocations in the pre-compressed Mg alloys, and, thus, variation in the mobility of twin boundaries (TB) is observed in the investigated alloys. Despite individual scenarios of TB mobility in particular grains, in general, the same TB mobility modes are observed in the alloys independently on Ca or Nd alloying. The microstructure development, particularly the twin volume fraction and the mobility of tensile {10-12} twin boundaries, is tracked using scanning electron microscopy, including backscattered electron (BSE) imaging and electron backscatter diffraction (EBSD) mapping.
See more in PubMed
Christian J.W., Mahajan S. Deformation twinning. Prog. Mater. Sci. 1995;39:1–157. doi: 10.1016/0079-6425(94)00007-7. DOI
Yoo M.H. Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Trans. A. 1981;12:409–418. doi: 10.1007/BF02648537. DOI
Wang Y.N., Huang J.C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy. Acta Mater. 2007;55:897–905.
He J., Liu T., Xu S., Zhang Y. The effects of compressive pre-deformation on yield asymmetry in hot-extruded Mg–3Al–1Zn alloy. Mater. Sci. Eng. A. 2013;579:1–8.
Kelley E.W., Hosford W.F. The deformation characteristics of textured magnesium. Trans. AIME. 1968;242:654–661.
Barnett M.R., Keshavarz Z., Beer A.G., Atwell D. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater. 2004;52:5093–5103.
Sarker D., Chen D.L. Dependence of compressive deformation on pre-strain and loading direction in an extruded magnesium alloy: Texture, twinning and de-twinning. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2014;596:134–144.
Bohlen J., Dobron P., Swiostek J., Letzig D., Chmelik F., Lukac P., Kainer K.U. On the influence of the grain size and solute content on the AE response of magnesium alloys tested in tension and compression. Mater. Sci. Eng. A. 2007;462:302–306. doi: 10.1016/j.msea.2006.02.470. DOI
Dobroň P., Drozdenko D., Horváth Fekete K., Olejňák J., Bohlen J. Grain Size-Related Strengthening and Softening of a Precompressed and Heat-Treated Mg–Zn–Ca Alloy. Materials. 2020;13:351. PubMed PMC
Xin Y., Zhou X., Lv L., Liu Q. The influence of a secondary twin on the detwinning deformation of a primary twin in Mg–3Al–1Zn alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2014;606:81–91. doi: 10.1016/j.msea.2014.03.068. DOI
Cui Y., Li Y., Wang Z., Ding X., Koizumi Y., Bian H., Lin L., Chiba A. Impact of solute elements on detwinning in magnesium and its alloys. Int. J. Plast. 2017;91:134–159. doi: 10.1016/j.ijplas.2016.09.014. DOI
Cui Y., Bian H., Li Y., Zhao Y., Aoyagi K., Chiba A. Impacts of pre-strain on twin boundary mobility of magnesium. J. Alloys Compd. 2020;816:152496. doi: 10.1016/j.jallcom.2019.152496. DOI
Cui Y., Li Y., Wang Z., Lei Q., Koizumi Y., Chiba A. Regulating twin boundary mobility by annealing in magnesium and its alloys. Int. J. Plast. 2017;99:1–18. doi: 10.1016/j.ijplas.2017.08.002. DOI
Cui Y., Li J., Li Y., Koizumi Y., Chiba A. Damping capacity of pre-compressed magnesium alloys after annealing. Mater. Sci. Eng. A. 2017;708:104–109. doi: 10.1016/j.msea.2017.09.096. DOI
Dobron P., Drozdenko D., Olejnak J., Hegedus M., Horvath K., Vesely J., Bohlen J., Letzig D. Compressive yield stress improvement using thermomechanical treatment of extruded Mg-Zn-Ca alloy. Mater. Sci. Eng. A. 2018;730:401–409. doi: 10.1016/j.msea.2018.06.026. DOI
Zhao L., Xin Y., Guo F., Yu H., Liu Q. A new annealing hardening mechanism in pre-twinned Mg–3Al–1Zn alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2016;654:344–351. doi: 10.1016/j.msea.2015.12.046. DOI
Song B., Guo N., Liu T., Yang Q. Improvement of formability and mechanical properties of magnesium alloys via pre-twinning: A review. Mater. Design. 2014;62:352–360. doi: 10.1016/j.matdes.2014.05.034. DOI
Lou X.Y., Li M., Boger R.K., Agnew S.R., Wagoner R.H. Hardening evolution of AZ31B Mg sheet. Int. J. Plast. 2007;23:44–86. doi: 10.1016/j.ijplas.2006.03.005. DOI
Chapuis A., Xin Y.C., Zhou X.J., Liu Q. {10-12} Twin variants selection mechanisms during twinning, re-twinning and detwinning. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2014;612:431–439. doi: 10.1016/j.msea.2014.06.088. DOI
Drozdenko D., Bohlen J., Yi S., Minárik P., Chmelík F., Dobroň P. Investigating a twinning–detwinning process in wrought Mg alloys by the acoustic emission technique. Acta Mater. 2016;110:103–113. doi: 10.1016/j.actamat.2016.03.013. DOI
Vinogradov A., Vasilev E., Linderov M., Merson D. In situ observations of the kinetics of twinning–detwinning and dislocation slip in magnesium. Mater. Sci. Eng. A. 2016;676:351–360. doi: 10.1016/j.msea.2016.09.004. DOI
Molodov K.D., Al-Samman T., Molodov D.A. Profuse slip transmission across twin boundaries in magnesium. Acta Mater. 2017;124:397–409. doi: 10.1016/j.actamat.2016.11.022. DOI
Bohlen J., Dobron P., Nascimento L., Parfenenko K., Chmelik F., Letzig D. The Effect of Reversed Loading Conditions on the Mechanical Behaviour of Extruded Magnesium Alloy AZ31. Acta Phys. Pol. A. 2012;122:444–449. doi: 10.12693/APhysPolA.122.444. DOI
Dong H., Pan F., Jiang B., Li R., Huang X. Mechanical properties and deformation behaviors of hexagonal Mg-Li alloys. Mater. Des. 2015;65:42–49. doi: 10.1016/j.matdes.2014.08.033. DOI
Wu W., Liaw P.K., An K. Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction. Acta Mater. 2015;85:343–353. doi: 10.1016/j.actamat.2014.11.030. DOI
Drozdenko D., Čapek J., Clausen B., Vinogradov A., Máthis K. Influence of the solute concentration on the anelasticity in Mg-Al alloys: A multiple-approach study. J. Alloys Compd. 2019 doi: 10.1016/j.jallcom.2019.01.358. DOI
Wang L., Huang G., Quan Q., Bassani P., Mostaed E., Vedani M., Pan F. The effect of twinning and detwinning on the mechanical property of AZ31 extruded magnesium alloy during strain-path changes. Mater. Des. 2014;63:177–184. doi: 10.1016/j.matdes.2014.05.056. DOI
Sarker D., Chen D.L. Detwinning and strain hardening of an extruded magnesium alloy during compression. Scr. Mater. 2012;67:165–168. doi: 10.1016/j.scriptamat.2012.04.007. DOI
Proust G., Tomé C.N., Jain A., Agnew S.R. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast. 2009;25:861–880. doi: 10.1016/j.ijplas.2008.05.005. DOI
Wang H., Wu P.D., Tomé C.N., Wang J. A constitutive model of twinning and detwinning for hexagonal close packed polycrystals. Mater. Sci. Eng. A. 2012;555:93–98. doi: 10.1016/j.msea.2012.06.038. DOI
Wang H., Wu P.D., Wang J., Tomé C.N. A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms. Int. J. Plast. 2013;49:36–52. doi: 10.1016/j.ijplas.2013.02.016. DOI
Wang J., Beyerlein I.J., Tomé C.N. Reactions of lattice dislocations with grain boundaries in Mg: Implications on the micro scale from atomic-scale calculations. Int. J. Plast. 2014;56:156–172. doi: 10.1016/j.ijplas.2013.11.009. DOI
Cui Y., Li Y., Sun S., Bian H., Huang H., Wang Z., Koizumi Y., Chiba A. Enhanced damping capacity of magnesium alloys by tensile twin boundaries. Scr. Mater. 2015;101:8–11. doi: 10.1016/j.scriptamat.2015.01.002. DOI
Dobron P., Chmelik F., Yi S.B., Parfenenko K., Letzig D., Bohlen J. Grain size effects on deformation twinning in an extruded magnesium alloy tested in compression. Scr. Mater. 2011;65:424–427. doi: 10.1016/j.scriptamat.2011.05.027. DOI
Beyerlein I.J., Capolungo L., Marshall P.E., McCabe R.J., Tome C.N. Statistical analyses of deformation twinning in magnesium. Philos. Mag. 2010;90:2161–2190. doi: 10.1080/14786431003630835. DOI
Stanford N., Marceau R.K.W., Barnett M.R. The effect of high yttrium solute concentration on the twinning behaviour of magnesium alloys. Acta Mater. 2015;82:447–456. doi: 10.1016/j.actamat.2014.09.022. DOI
Gharghouri M.A., Weatherly G.C., Embury J.D., Root J. Study of the mechanical properties of Mg-7.7at.% Al by in-situ neutron diffraction. Philos. Mag. A. 1999;79:1671–1695. doi: 10.1080/01418619908210386. DOI
Gharghouri M.A., Weatherly G.C., Embury J.D. The interaction of twins and precipitates in a Mg-7.7 at.% Al alloy. Philos. Mag. A. 1998;78:1137–1149. doi: 10.1080/01418619808239980. DOI
Jain J., Cizek P., Poole W.J., Barnett M.R. The role of back stress caused by precipitates on twinning in a Mg–6Zn alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2015;647:66–73. doi: 10.1016/j.msea.2015.08.091. DOI
Stanford N., Barnett M.R. Effect of particles on the formation of deformation twins in a magnesium-based alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2009;516:226–234. doi: 10.1016/j.msea.2009.04.001. DOI
Park S.H., Lee J.H., Huh Y.-H., Hong S.-G. Enhancing the effect of texture control using {10−12} twins by retarding detwinning activity in rolled Mg–3Al–1Zn alloy. Scr. Mater. 2013;69:797–800. doi: 10.1016/j.scriptamat.2013.09.002. DOI
Xin Y., Zhang Y., Yu H., Chen H., Liu Q. The different effects of solute segregation at twin boundaries on mechanical behaviors of twinning and detwinning. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2015;644:365–373. doi: 10.1016/j.msea.2015.07.049. DOI
Nie J.F., Muddle B.C. Precipitation hardening of Mg-Ca(-Zn) alloys. Scr. Mater. 1997;37:1475–1481. doi: 10.1016/S1359-6462(97)00294-7. DOI
Robson J.D., Stanford N., Barnett M.R. Effect of particles in promoting twin nucleation in a Mg-5 wt.% Zn alloy. Scr. Mater. 2010;63:823–826. doi: 10.1016/j.scriptamat.2010.06.026. DOI
Minárik P., Jablonská E., Král R., Lipov J., Ruml T., Blawert C., Hadzima B., Chmelík F. Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy. Mater. Sci. Eng. C. 2017;73:736–742. doi: 10.1016/j.msec.2016.12.120. PubMed DOI
Nie J.F., Zhu Y.M., Liu J.Z., Fang X.Y. Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries. Science. 2013;340:957–960. doi: 10.1126/science.1229369. PubMed DOI
Xin Y., Zhou X., Chen H., Nie J.-F., Zhang H., Zhang Y., Liu Q. Annealing hardening in detwinning deformation of Mg–3Al–1Zn alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2014;594:287–291. doi: 10.1016/j.msea.2013.11.080. DOI
Zeng Z.R., Zhu Y.M., Bian M.Z., Xu S.W., Davies C.H.J., Birbilis N., Nie J.F. Annealing strengthening in a dilute Mg–Zn–Ca sheet alloy. Scr. Mater. 2015;107:127–130. doi: 10.1016/j.scriptamat.2015.06.002. DOI
Drozdenko D., Dobroň P., Yi S., Horváth K., Letzig D., Bohlen J. Mobility of pinned twin boundaries during mechanical loading of extruded binary Mg-1Zn alloy. Mater. Charact. 2018;139:81–88. doi: 10.1016/j.matchar.2018.02.034. DOI
Nie J.-F. Precipitation and Hardening in Magnesium Alloys. Metall. Mater. Trans. A. 2012;43:3891–3939. doi: 10.1007/s11661-012-1217-2. DOI
Minárik P., Drozdenko D., Zemková M., Veselý J., Čapek J., Bohlen J., Dobroň P. Advanced analysis of the deformation mechanisms in extruded magnesium alloys containing neodymium or yttrium. Mater. Sci. Eng. A. 2019;759:455–464. doi: 10.1016/j.msea.2019.05.069. DOI
Wang W.Z., Wu D., Chen R.S., Qi Y., Ye H.Q., Yang Z.Q. Revisiting the role of Zr micro-alloying in a Mg-Nd-Zn alloy. J. Alloys Compd. 2020;832:155016. doi: 10.1016/j.jallcom.2020.155016. DOI
Sanaty-Zadeh A., Xia X., Luo A.A., Stone D.S. Precipitation evolution and kinetics in a magnesium-neodymium-zinc alloy. J. Alloys Compd. 2014;583:434–440. doi: 10.1016/j.jallcom.2013.08.198. DOI
Stráská J., Minárik P., Šašek S., Veselý J., Bohlen J., Král R., Kubásek J. Texture Hardening Observed in Mg–Zn–Nd Alloy Processed by Equal-Channel Angular Pressing (ECAP) Metals. 2020;10:35. doi: 10.3390/met10010035. DOI
Drozdenko D., Bohlen J., Chmelík F., Lukáč P., Dobroň P. Acoustic emission study on the activity of slip and twin mechanisms during compression testing of magnesium single crystals. Mater. Sci. Eng. A. 2016;650:20–27. doi: 10.1016/j.msea.2015.10.033. DOI
Wang Q., Liu L., Jiang B., Fu J., Tang A., Jiang Z., Sheng H., Zhang D., Huang G., Pan F. Twin nucleation, twin growth and their effects on annealing strengths of Mg–Al–Zn–Mn sheets experienced different pre-compressive strains. J. Alloys Compd. 2020;815:152310. doi: 10.1016/j.jallcom.2019.152310. DOI
Teng J., Gong X., Li Y., Nie Y. Influence of aging on twin boundary strengthening in magnesium alloys. Mater. Sci. Eng. A. 2018;715:137–143. doi: 10.1016/j.msea.2017.12.110. DOI
Liu Y., Li N., Shao S., Gong M., Wang J., McCabe R.J., Jiang Y., Tomé C.N. Characterizing the boundary lateral to the shear direction of deformation twins in magnesium. Nat. Commun. 2016;7:11577. doi: 10.1038/ncomms11577. PubMed DOI PMC
El Kadiri H., Barrett C.D., Wang J., Tomé C.N. Why are {101¯2} twins profuse in magnesium? Acta Mater. 2015;85:354–361. doi: 10.1016/j.actamat.2014.11.033. DOI
Liu Y., Tang P.Z., Gong M.Y., McCabe R.J., Wang J., Tomé C.N. Three-dimensional character of the deformation twin in magnesium. Nat. Commun. 2019;10:3308. doi: 10.1038/s41467-019-10573-7. PubMed DOI PMC
Wang F., Hazeli K., Molodov K.D., Barrett C.D., Al-Samman T., Molodov D.A., Kontsos A., Ramesh K.T., El Kadiri H., Agnew S.R. Characteristic dislocation substructure in 101¯2 twins in hexagonal metals. Scr. Mater. 2018;143:81–85. doi: 10.1016/j.scriptamat.2017.09.015. DOI
Gong M., Hirth J.P., Liu Y., Shen Y., Wang J. Interface structures and twinning mechanisms of twins in hexagonal metals. Mater. Res. Lett. 2017;5:449–464. doi: 10.1080/21663831.2017.1336496. DOI
Robson J.D., Stanford N., Barnett M.R. Effect of Precipitate Shape and Habit on Mechanical Asymmetry in Magnesium Alloys. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2013;44:2984–2995. doi: 10.1007/s11661-012-1466-0. DOI
Koike J., Fujiyama N., Ando D., Sutou Y. Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys. Scr. Mater. 2010;63:747–750. doi: 10.1016/j.scriptamat.2010.03.021. DOI
Yu Q., Wang J., Jiang Y., McCabe R.J., Li N., Tomé C.N. Twin–twin interactions in magnesium. Acta Mater. 2014;77:28–42. doi: 10.1016/j.actamat.2014.05.030. DOI
Čapek J., Máthis K., Clausen B., Stráská J., Beran P., Lukáš P. Study of the loading mode dependence of the twinning in random textured cast magnesium by acoustic emission and neutron diffraction methods. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2014;602:25–32. doi: 10.1016/j.msea.2014.02.051. DOI